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A B S T R A C T   

Strategic decision-making for sequential move games requires rationality and continuity of ra-
tionality to guarantee maximum payoffs at all nodes/stages/levels. Rationality and continuity of 
rationality in a player’s behaviour are not often observed and/or maintained thus, leading to less 
optimal outcomes. More so, the belief in an opponent’s rationality, on the other hand, co- 
determines the level of effort a player employs while making strategic decisions. Given irratio-
nality and discontinuity of rationality in a sequential move game with mover advantages, there 
are strategic steps (algorithms) to convert and/or maintain the mover advantages of an irrational 
player. In this paper, the conversion strategy algorithms, as well as the optimal strategy algo-
rithms, are developed using the Beta Limit Sum (BLS) strategy model and the game of strokes. The 
simulation exercises confirm that the BLS strategy model is an optimal solution for the finite 
sequential game of strokes. One of the key applications of these strategies is that of resource 
economics like environmental resources (clean water, air & land). These are public goods, as 
such, the optimal strategy entails that the community cooperates (as one entity) and takes the 
same actions or strategy to maintain a healthy and clean state of the communal environmental 
resources.   

1. Introduction 

The theory of Rationalizability [1] is built on the Rational Choice Theory (RCT) which postulates that a player takes an action to 
maximize personal benefits [2–4]. A player is considered rational when they do what is best for them or maximize expected utility or 
payoff [5]. Both RCT and Rationalizability commonly assume that a player is first, able to identify what is best for them (i.e., the utility 
or payoff) before taking actions to achieve their goals. Generally, a player is rational when they first identify what is best for them (i.e., 
advantages in a game) and then, take strategic actions or decisions that maximize their advantages to achieve optimal payoffs. In finite 
sequential or repeated games, rationality at a decision node or stage remains vital [3,6]. However, this study shows that rationality at a 
decision node is only necessary but not sufficient to achieve optimal payoffs. Conversely, to achieve optimal payoffs in finite sequential 
games, a rational player needs to continually identify and take rational actions or decisions at all the decision nodes or stages. 
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Therefore, continuity of rationality suggests that at each decision node or stage, a rational player maintains the strategic path that 
guarantees the optimal payoff. Thus, a player needs to first identify what is best for them and maintain their best or optimal actions in a 
finite sequential game. This invariably means that there are chances of a player not identifying what is best for them. Therefore, a step 
further to just identifying and maintaining optimal decisions at each node in a finite sequential game is the ability of a rational player to 
convert (and maintain) an opponent’s mover advantage to theirs, when their opponent fails to identify what is best for them at a 
decision node. 

In contribution, this study is an algorithmic contribution to the field of Game Theory as it pertains to developing and applying 
optimal strategy paths to finite sequential games, using the Game of Strokes (GOS) as an example. Specifically, there are four major 
contributions of this study. firstly, this paper develops the optimal strategy algorithm that identifies and maintains mover-advantages 
for the finite sequential game of strokes. This optimal strategy is the strategic actions or path for a rational player at each decision node. 
Nonetheless, this strategy assumes that, at least, a player is rational in a finite sequential game of strokes. The optimal strategy al-
gorithm ensures that a rational player identifies, initiates and maintains (continuity of rationality) their strategy to maximize their 
payoff, thus called the Optimal Strategic Path (OSP). Secondly, this study shows, using the idea of mover advantage conversion, that in 
finitely repeated games, identifying one’s mover advantage does not guarantee an optimal outcome and rational players are capable of 
converting their opponents’ mover advantages to their benefit in finite repeated or sequential games. Thirdly, over 10,000 simulations 
of the finite sequential GOS were played using the proposed Beta Limits Sum (BLS) strategy. The proposed BLS model strategy includes 
three algorithms. These are the Identification Algorithm, the Mover Advantage Maintenance Algorithm and the Mover Advantage 
Conversion Algorithm. Based on the simulation results, the performance of the proposed BLS model is second to none. Lastly, the 
application of these developed optimal algorithms in the area of Resource Economics is itemized and discussed. Generally, this paper 
builds on the nature of rational choices in strategic games [5] to validate the existence of rationality in the behaviour of a player when 
faced with a strategic decision-making scenario or game. By implication, this study reveals the player’s rationality, as seen in the 
optimal strategic path of the sequential game of strokes. Secondly, this paper shows the need to maintain an optimal strategy i.e., 
continuity of rationality, to guarantee a superior outcome. Thirdly, this study presents evidence of mover advantages conversion in a 
repeated or sequential game. Lastly, this study shows the application of this optimal strategic decision-making in the field of Resource 
economics. In a nutshell, these contributions & implications highlight the relevance and significance of this study. They also buttress 
the novelty of this article in solving and providing the ever-first optimal solution for the finite sequential GOS. 

The next vital point to illustrate is the relevance of the GOS. Every model is an abstraction of reality. Like models, strategic games 
like the GOS are abstractions of reality. The GOS is strategically designed to depict decision-making processes in a finite sequential 
game. GOS seeks to train players on how to identify and act on what is best for you or your team. In real-time, business corporations 
constantly engage in sequential pricing and output decision processes over time (finite or infinite). Like the GOS, models like the 
Cournot model, the Bertrand model and the Stackelberg model are all examples of reality abstractions that seek to equip decision- 
makers with the right skill set, knowledge and readiness to make simultaneous and sequential decisions that are optimal and maxi-
mize payoffs or benefits. The decision-making skills of the GOS are an essential part of high-level managers who are faced with other 
skilled competitors to maximize individual or group benefits or payoffs. An example would be making and taking sequential price and 
output decisions in an oligopoly market wherein every firm or company wants to maximize their market share, minimize costs, 
maximize profits, etc. Unlike Cournot, Bertrand and Stackelberg models which have existing optimal solution models, the GOS, until 
now, has no optimal solution model. This is the gap filled by this study. The proposed optimal solution model for the GOS, in this study, 
does more than just solve the GOS. In addition, it identifies and converts competitors’ advantages to one’s benefit whenever an ir-
rational decision is identified. 

To juggle our minds, Game of Strokes (GOS) is a popular sequential game wherein players (simplest case: 2 players) strike out β 
strokes at each sequential node out of ϑ strokes. β can be a number between a minimum of one and a maximum of βmax at each node. 
β and ϑ are determined at the beginning of the game. Whoever strikes out the last stroke(s) wins the game. In simple and clear terms, 
β and ϑ ∈N++. For instance, in Fig. 1, ϑ= 6 and say βmax = 3. This means that a player can strike out a minimum of 1 (βmin= 1) stroke 
and a maximum of 3 strokes (βmax= 3) in a turns or node. Interestingly, for n − players, there always exists a mover’s advantage (α) for 
all β and ϑ i.e. α ε [0,…, βmax] ∀ β and ϑ. α> 0 means only a first mover advantage exists at the beginning of the game, otherwise, a 
second mover advantage.1 Therefore, considering Fig. 1 and setting n= 2, every rational player would easily observe that there is a 
first-mover advantage when βmax= 3 and a second mover advantage when βmax = 2. Also, this can be illustrated in a decision tree (see 
Fig. 2). The optimal strategy set for βmax= 3 that achieves α= 2, first mover advantage, is {{2,3}, {2,2}, {2,1}} while that of α= 0, 
second mover advantage, given βmax= 2 is {{2,2},{2,1},{1,2},{1,1}}. Each element of the optimal strategy sets is an optimal strategy 
path that solves the finite sequential GOS ∀ β and ϑ. The optimal path {2,3} in simple terms means, to win the game, the first player 
should strike out 2 strokes at the initial or first node and strike out 3 strokes (if the second player strikes out 1 stroke at the previous 
node). These optimal paths depend on the choice of strokes the second player chooses to strike out, however, a rational player needs to 
be consistent (continuity of rationality) with an optimal strategic path to assure victory. Deviations from an optimal strategy path 
present one’s opponent an opportunity to convert existing mover advantage to their benefit. 

It is important to note that an irrational player would most likely fail to identify these mover advantages. Secondly, starting with 
the optimal strategic path does not also guarantee winning the game as continuity on this optimal strategy path is vital in achieving 
success in this game. Using the example as illustrated in Figs. 1 and 2, when β= 3 and α= 1 exists. The fact that the first player strikes 

1 It is necessary to point out that this mover advantage exists AT THE BEGINNING of the game. In other words, it could be converted to another 
player/mover’s advantage during the course of the game. 
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out 2 strokes at the first decision node or turn still does not guarantee that they win even though this is a rational move at the first node 
but, the continuity of the rational moves given the opponent’s action at all decision nodes guarantees the first player wins the game. 

Taking a step further into this game, when ϑ is very large, an example is shown in Fig. 3, it becomes difficult for any player to 
ascertain a mover advantage. This difficulty, however, does not deny the existence of a mover advantage in the game of strokes. We 
could make a game of strokes more interesting and complex by varying one or more of the model parameters like n, β, σ,ϑ, etc. For the 
purpose of this paper, a player is said to behave irrationally when they cannot identify or/and consistently maintain the optimal 
strategy path that maximizes their payoff. Conversely, Discontinuity of rationality is the scenario when an irrational player does not 
continue taking the optimal strategy path when it exists. In other words, a rational player must exhibit the continuity of rationality 
while an irrational player must not. 

2. Literature review 

Interactive epistemology begins with the basic assumption of rationality and the common belief in rationality [7]. On this basis, 
taking Strategic actions when presented with scenarios that warrant it to maximize one’s benefit or payoff is not often the outcome as 
expected [8,9], thus, creating the puzzle of why players do not take the optimal actions that maximize their payoffs. Empirically, it is 
clear that in strategic decision-making games, players do not often realize the existence of an optimal strategy or Nash Equilibrium(ria) 
which gives the best outcome or payoff (assuming common knowledge of the game and with or without prior information) [10–13]. 
Therefore, the assumption of rationality is not often validated in every game. In cases a player is not rational enough to maximize their 
payoff, what does a rational opponent do to convert and/or maintain their (opponent’s) mover advantage to their benefit in a 
sequential move game? 

Battigalli and Siniscalchi [14] studied epistemology in dynamic games as they provide and analyze the solution to dynamic games 
which involves the conditional belief of a player of the other player’s rationality conditioned on the historical actions of that player. 
Their results show common certainty of the opponent’s rationality conditional on an arbitrary collection of histories in multi-stage 
games with observed actions and incomplete information. However, in their 2002 paper on belief and forward induction 
reasoning, they noted that forward induction reasoning governs the players’ belief revision process as they provide an epistemic 
analysis of forward induction solutions on complete and incomplete information games [15]. Brandenburger [16] presented the 
paradox of game reasoning as it has played significant roles in interactive epistemology which studies players’ beliefs, knowledge, etc. 
which he called the paradox of Backward Induction and that of iterated weak dominance. These paradoxes are more or less, the as-
sumptions that do not hold when the backward induction path is not played and the iterated deletion is on the assumption that they are 
not expected to occur when they can also occur given the rationality of the players. 

Rubinstein [13] showed that in a theoretical game, common knowledge aids the rational behaviour of the players using a closely 
related game to the coordinated attack problem. The outcomes showed that a coordinated game with common knowledge is signif-
icantly different from a coordinated game with almost common knowledge [13,17]. Aumann, however, noted in their paper, agreeing 
to disagree, that the fact that each player has a common belief of the other player(s)’ rationality suggests that these players cannot 
agree to disagree. In other words, rationality in the behaviour of players with some level of common knowledge will always agree to 
work together [12]. 

Payoffs in a strategic game depend on the strategic actions of the players, their belief in other players, what they think others 
believe about other players, etc. Beliefs are dependent on reality thus, there are always sequential equilibria in sequential games [18]. 
Rationality in the behaviour of the players entails the iterative elimination of weakly dominated strategy. This behaviour is based on 
the assumption that each player knows exactly the other player’s payoff without doubts but when doubts exist, Dekel and Fudenberg 
[19] showed that the only action close to rationality is one round elimination of weakly dominated strategy followed by the strongly 
dominated strategy. Bornstein & Yaniv [20] investigated if rationality is seen more when individuals make independent decisions 
relative to making group decisions via experiments (Ultimatum game) and the result shows that rationality while working as a group is 
less relative to individual decision-making scenarios. 

Sequential games are a key policy strategy and have been applied in many other aspects other than game theory. They include 
option contracts [21], carbon tax and emission [22], electricity market [23], robbers and cops [24], traffic monitoring and vehicular 
networks [25], labour union bargaining and entry [26,27], inter-generational resource sharing [28], nuclear fuel transition [29], fleet 
management [30], endowment and property rights [31], defence resource allocation [32–35], cluster analysis [36], climate policy [30, 
37], stochastic programming [38], behaviour and time horizon [39–41], security cooperation [42], parental care [43], competi-
tiveness and gender differences [44], health insurance choices [45], grid applications [46], candidate interviews [47], classroom 
quizzes [48], mental accounting [49], rumour propagation [50], desire thinking [51], kind and money transfer [52], social influence 
[53], football game [54], ambiguity attitude [55], etc. These are only a few of the exploits, in literature, that utilize the sequential 
game approach. 

In emphasizing the significance of this study, other existing studies on sequential games have shown that irrational behaviours are 
inherent even though rationality is assumed. Therefore, in cases of irrationality (i.e., at least, a player behaves irrationally), firstly, how 
does a rational player identify the mover advantages of a finite sequential game like the GOS? Secondly, what does a rational player do 
in other to maintain the mover advantage to their benefit? Thirdly, in cases of discontinuity of rationality, what does a rational player 
do to convert the opponent’s mover advantages to their benefit? Fourthly, is the developed model’s strategy optimal? Hence, this study 
takes a step further into solving sequential games, like the Game of Strokes (GOS), by answering these key questions. In contribution, 
this paper builds on the fact that rationality and its (dis)continuity are inherent in sequential games such as the GOS to develop optimal 
strategic algorithms for identification, maintenance, and conversion of mover advantages. The relevance of this paper on strategic 
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decision-makers is therefore summarized into the identification, maintenance, and conversion of mover advantages in sequential 
strategic decision-making. Furthermore, more discussions on the application of these strategies in other areas, such as resource and 
environmental economics, are provided. 

3. Methods 

The Optimal Strategic path algorithm is developed in this section. This is the model that identifies mover advantages (player’s 
benefits), maintains the mover advantage at each decision node or stage, and converts the opponent’s mover advantages when the 
opponent takes irrational actions or decisions. 

3.1. The game of strokes (GOS) 

The Game of Strokes (GOS) is a sequential game that will always have a mover advantage. These mover advantages are identified 
considering the model parameters explained in section 1.0. For better comprehension and simplicity’s sake, the GOS is defined as.  

1. n= 2 i.e. Two Players  
2. Total strokes, ϑ, and maximum stricken strokes per node, βmax are determined.  
3. At each node, players strike β strokes sequentially (β∈ N++; β≥ 1; 1≤ β≤ βmax).  
4. The player that strikes out the last stroke(s) wins.  
5. {n,β,ϑ,βmax} ∈ N++. 

3.2. Beta Limit Sum (BLS) strategy model 

In any sequential game such as the game of strokes, there will always be sequential equilibria [18]. The sequential equilibria of the 
GOS coincide with the optimal strategic paths. To understand this strategy, throughout the remaining parts of this paper, let Xi be First 
player’s choice (number of strokes cancelled) in the ith turn and Yi be the Second player’s choice in the ith turn. After identifying the 
player with a mover advantage, the optimal strategy path for the mover-advantaged player in the game of strokes hinges on leaving a 
multiple of (βmin +βmax) after each turn. For all versions of GOS, βmin equals 1, therefore, the mover-advantaged player needs to leave a 
multiple of (β+1) strokes after each turn to guarantee they win the game. In other words, for each turn, the sum of the strokes removed 
by you and your opponent must equal (β+1), this guarantees that the number of strokes left after a mover-advantaged player’s turn will 
be a multiple of (β+1). The name of this strategy is, therefore, the Beta Limits Sum (BLS) Strategy. 

To develop the Beta Limits Sum (BLS) strategy model, the following additional assumptions are made.  

1. At least, a player is rational: A rational player wants to maximize their payoffs no matter the cost (i.e., the player is not altruistic). 
Specifically, a rational player identifies, maintains, and converts mover advantages to establish an optimal strategy path.  

2. A rational player must exhibit continuity of rationality.  
3. Perfect Information: each player knows the choice/action of the player that played before them as they make their decision 

(sequential move game), except for the first mover in the first round.  
4. α ∈ [0,1, 2,…,β] ∀ n,β,σ and ϑ; Mover advantage always exists  
5. βmax ∕= βmin: This implies that β> 1. However, if β= 1, then βmax = βmin= 1 then when ϑ is even the First-Mover always wins and 

when ϑ is odd the Second Mover always wins without effort or thinking (will of the gods).  
6. ϑ > (β+ 1).  
7. σ= max (Mul(β+1))≤ ϑβ+1))≤ ϑMul i.e., σ is the highest multiple of (β+1) such that σ ≤ ϑ. 

These underlining assumptions guide the formation of the games for all complexity versions of the GOS and guarantee that there 
will always exist a mover advantage in every game. The identification of a mover advantage becomes rather simple in this model given 
the model parameters. After the identification of a mover advantage, the next essential action is to establish and maintain the optimal 
strategic paths (optimal strategic set). Finally, not all players can identify, establish and maintain an optimal strategy path. In such an 
irrational decision scenario, a rational player needs to be able to convert the irrational player’s advantages or benefits to themselves. 
These are the three (3) components of the BLS strategy model, proposed in this study. 

3.2.1. BLS identification of a mover advantage 
Recall that ∀ δ,β and ∃ α = i ∃ i ∈ [0,1, 2,…,β]. This fact only guarantees the existence of a mover advantage but does not say which 

player has or enjoys the mover advantage in the finite sequential game of strokes. To identify the player with the mover advantage 
given any δ and β, the 7th BLS model assumption is required. The player with the mover advantage can be identified in two steps: first, 
determine the value of α∈ [0,…,β] such that ϑ − σ=α and next, there exists a second-mover advantage if α= 0 while there exists a first- 
mover advantage if α ∕= 0. 
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3.2.2. BLS maintenance optimal strategy equilibria path 

3.2.2.1. First mover advantage (α> 0) optimal strategy algorithm. As long as ϑ is not a multiple of (β+1) there will always be a first- 
mover advantage, i.e. α ∕= 0. When this first-mover advantage exists, the first play has a unique first-step action to take and subse-
quently plays the Beta Limits Sum (BLS) strategy. The steps are as follows: Using the definitions aforementioned, Xi & Yi and α = ϑ −

σ:α ∕=0. The optimal strategy path algorithm of the first mover becomes X1 = α strokes and subsequently play the BLS maintenance 
strategy, i.e. play 

Xi =(β+1)− Yi− 1 where i≥ 2 (1)  

3.2.2.2. Second mover advantage (α= 0) optimal strategy algorithm. As long as ϑ is a multiple of (β+1) there will always be a second- 
mover advantage. This guarantees that ε= 0 and such situations, however, implies that the first mover should cancel 0 strokes but this 
is not obtainable given that Xi,Yi ∈ [1,β]. This, however, shifts the mover advantage to the second mover and whenever this is the case, 
the optimal strategy path algorithm that guarantees the second mover wins is the BLS strategy, i.e. 

Yi =(β+1)− Xi where i≥ 1 (2) 

An illustration of the BLS strategy using the GOS shown in Fig. 3 i.e. Example 2. First, we define the model parameters, ϑ= 92 and 
setting β = βmax= 2 gives ε= 2 implying a first mover advantage and setting β = βmax= 3 gives ε= 0 implying a second mover 
advantage. For β = βmax = 3, the second mover quickly adopts the BLS strategy to maintain their mover advantage and wins. On the 
other hand, when β = βmax = 2, the first mover must first strike out 2 strokes then, play the BLS to maintain their mover advantage and 
win. The optimal strategy sets developed for Example 1 adopt the BLS strategy. It is vital to emphasize that this rational strategy (BLS) 
is only a necessary condition for winning a GOS given one has a mover advantage while a sufficient condition is the continuity of 
rationality. This implies that for a first-mover advantaged player, the first action of striking out ε strokes and/or using the BLS strategy 
till an intermediate stage does not guarantee a win, vice versa the second mover advantaged player. Any deviation from the BLS 
strategy makes a mover-advantaged player prone to losing the game and if their opponent is a rational player, this is a perfect op-
portunity to convert the mover advantage to their benefit. Just a single period of deviation is enough to convert a mover advantage for 
a rational player. 

3.2.3. BLS conversion algorithm 

3.2.3.1. Irrational responses and belief of rationality. Irrational responses or actions from one’s opponent inform a player about the 
rationality stance of their opponent and thus, explain the concept, and belief of rationality in a game [2]. The maximization of payoffs 
in a strategic decision-making game is a function of the choice(s) of action taken by a player. A player’s strategic action further depends 
on their perception or belief in their opponent’s rationality or K-levels of reasoning [56]. Intuitively, when a rational player is matched 
with another player whom they believe is irrational, the rational player can apply a necessary (but relatively lower) level of reasoning 
and win but if they believe their opponent is rational, to win, they have to apply a higher level of reasoning [57]. Therefore, the belief 
of rationality is not instantaneous or given but can be deduced from the actions taken by one’s opponent. A player will automatically 
believe that their opponent is (ir)rational when they observe that their opponent had taken an(a) (less-)optimal action and vice versa. 
Hence, this belief in the opponent’s rationality suggests the level of effort a player employs. 

An irrational behaviour is feasible both at the beginning of the game or at an intermediate stage of the game of strokes. The 
identification of irrational behaviour is equally important especially when there are possibilities of mover advantage conversion. In the 
game of strokes, the conversion mechanism is somewhat different, depending on the round or stage (i.e., first or intermediate stage) the 
irrational action was taken by the mover-advantaged player. 

3.2.3.2. Continuity and discontinuity of rationality. Based on the arguments of this study, it is not enough to start off making rational 
choices but its continuity. Discovering a mover advantage is a necessary condition while taking and maintaining the rational choice 
path is the sufficient condition towards winning a game of strokes. Therefore, that a player discovers they have a mover advantage is 
not informative of winning a game except in a situation where the player with the mover advantage is continuously making rational 
choices at each round or decision node of the game. Thus, identifying when one has a mover advantage is rational and this rational 
behaviour can be continuous or discontinuous. Moreover, a discontinuity on the optimal strategy path can be observed at the 
beginning (round 1) or any intermediate round of the game. Therefore, a rational player looks out for the continuity as well as 
discontinuity of rationality in the behaviour of their opponent. The question becomes, how does a rational player continue behaving 
rationally when they do not have a mover advantage? In other words, we are considering the conversion mechanism of mover ad-
vantages from an irrational player to a rational player. In a game of strokes, we have established that there is always either a first or a 
second-mover advantage and these advantages can as well be converted to a second or a first-mover advantage respectively when an 
advantaged player behaves irrationally at the beginning or intermediate round of the game. Therefore, this conversion is not only 
possible at the beginning of the game but can also take place at any point in the game aside from the terminal stage or round. Firstly, we 
examine the discontinuity of rationality at the beginning of the game via. 
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4. Discussions, results and application 

4.1. Irrational advantaged first mover and a rational second mover 

When there exists a first-mover advantage and the player does not take the optimal strategy path, they are said to be an irrationally 
Advantaged First Mover. To illustrate and discuss the conversion algorithm in this scenario, let’s first establish that X1 is the irrational 
action i.e., X1 ∕= α. By definition, the first mover’s irrational choice of action X1:X1 ∈ [1, βmax] ∩ αc where α ∈ N++. The conversion 
algorithm of the first-mover advantage to a second-mover advantage requires the second mover to strikeout Y1

∗ strokes such that: 

X1 +Y1
∗ = α if X1 < α (3)  

X1 +Y1
∗ = (β+1) + α if X1 > α (4) 

and subsequently, the second player adopts the BLS maintenance strategy path illustrated in equation (2). Y1
∗ is the unique choice 

that converts the first-mover advantage to a second-mover advantage. Next, we discuss the second possible case at the initial node of 
the finite sequential GOS. 

4.2. Irrational advantaged second mover and a rational first mover 

When there exists a second-mover advantage and the second-mover is irrational and does not take the optimal strategy path 
(behaves irrationally) i.e., their choice of action is Y1:Y1 ∕= (β+ 1) − X1. To convert this second-mover advantage to a first-mover 
advantage, the first-mover should choose X2

∗ such that satisfies the condition; 

X2
∗ +Y1 + X1 = Mul(β+1) (5) 

and subsequently, play the BLS maintenance strategy in equation (1). Where Mul(β+1) represents any element in the set of 
multiples of (β+ 1). These unique algorithms can only guarantee the conversion of second-mover advantages from an irrational player 
to a rational player’s first-mover advantage at the first node or round or stage. That is, the mover advantage would shift to the 
disadvantaged second mover from the advantaged first mover. It is important to reaffirm that these conversion algorithms are peculiar 
and unique to irrational choices at the beginning of the GOS. What if this irrationality occurs at an intermediate node and not at the 
initial node? The conversion strategy for an irrational decision of an advantaged mover at an intermediate node is equally developed 
and discussed in the next subsection. 

4.3. Irrationality at an intermediate node or round or stage of a GOS 

Sections 3.1 and 3.2 discuss cases of irrational decisions at the first node of the GOS. However, a player can only identify mover 
advantages but neither maintain nor convert an opponent’s mover advantages to their benefit at this first node. Maintaining mover 
advantages and converting an opponent’s mover advantage is only possible at an intermediate node or stage or round of the finite 
sequential GOS given an irrational (or suboptimal) action or decision. Thus, in a situation, where an opponent discovers they have the 
mover advantage and initiates the optimal strategy path at the first or earlier stage(s) of the game but does not continue to follow the 
optimal strategy equilibria path, the BLS model, how should a rational player convert their opponent’s mover advantage to theirs? This 
is a case of discontinuity of rationality in an intermediate stage or round of a GOS i.e., X1 and Y1 are elements of the optimal strategy 
path. Generally, the path that guarantees winning given a mover advantage is that which ensures the cancellation of ρ strokes after jth 
player in the ith round or stage for player − j. 

ρ= α + i(β+1) (6)  

j= 1 or 2, i is the number of rounds. When α= 0, i∈ [1,2,…] and when α ∕= 0, i∈ [0,1,…] i.e. a first-mover owns the advantage and 
quickly strikes out α strokes in their first choice and subsequently adopts the BLS strategy (if they are rational). In this case, the first 
action of this first mover is indexed as i= 0 i.e. X0 = α (with a corresponding Y0) while the subsequent action of the first mover be-
comes X1 such that follows the BLS strategy i.e. satisfies equation (1) if they are a rational player. This adjustment on the indexation of i 
round is necessary to satisfy equation (6). The jth player has the mover advantage if they strike out ρ strokes and wins if they maintain 
striking out ρ strokes at the end of each round or stage. Recall, the optimal strategy path hinges on who completes the Beta Limits Sum 
(β+1) cycle. In other words, the player that always completes the Beta Limits Sum cycle after their decision wins. Moreover, based on 
the BLS strategy, the player with the initial mover advantage completes the BLS cycle if they make rational choices at each node i.e., 
they are guaranteed to win if they maintain the BLS strategy path (continuity of rationality). However, when at an intermediate stage 
or round, a mover-advantaged player strategically misses taking a decision that completes the BLS strategy path or cycle, the mover- 
advantage conversion mechanism entails that the opponent completes the cycle of (β+ 1). That is, for a second (first) mover to convert 
a first (second) mover advantage to their benefit, once the initially advantaged player misses to complete the BLS cycle of (β+ 1), the 
rational second (first) player should strike out Yi(Xi) strokes, such that satisfies equation 2 (1) respectively. 

To illustrate the conversion algorithm, we adopt Example 2 (Fig. 3) of = 92 , when β= 2 and α= 2. Firstly, let the irrational decision 
of the advantaged first player be at the initial stage hence, let be X1 = 1. Based on equation (3), Y1

∗= 1 and subsequent maintenance of 
the BLS strategy (in equation (2)) has converted the initial first-mover advantage to a second-mover advantage. Secondly, let the 
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irrational decision of the advantaged first player be X1 = 3. Based on equation (4), Y1
∗= 2 and subsequent maintenance of the BLS 

strategy (in equation (2)) has converted the initial first mover advantage to a second-mover advantage. Similar scenarios can be 
deduced for an initial second-mover advantage conversion to a first-mover advantage due to a first-stage irrational decision of an 
advantaged second-mover using equation (5). Secondly, equation (6) is used for the conversion of either an initial first or second- 
mover advantage to a second or first-mover advantage as a result of an intermediate irrational decision of an advantaged first or 
second mover in a GOS. 

4.4. Cooperation, collusion to cheat and relaxing the BLS model assumptions 

When there are more than two players, there are two possible resulting scenarios. First, two or more players can join and cooperate 
as a single group player. In such cases, the BLS strategy remains robust. However, for the second scenario, all players play as single 
individual units in the GOS but cooperate in terms of information sharing and general agreements or decisions on the number of strokes 
each team member strikes per turn. This is just like forming a cartel. Nonetheless, in cooperative sequential games, there are still 
arguments on what level of cooperation or transparency, from the cooperating players, is good or optimal [58]. However, in this 
scenario, at most, n− 1 players can form a cartel or/and collude to cheat, i.e., cooperating so that one of them wins the game. This 
involves a reasonable amount of transparency expected on the part of the cooperating players. This, however, entails that, at each turn, 
the cooperating group decides the optimal number of strokes or tokens to cancel as a group and for each group member and leaves at 
least m ∗ (β+1) strokes or tokens after the last group member plays, where m is the number of unit players (individuals and groups 
playing as a unit player) aside from the group members. This guarantees that a member of the cooperating team wins. It is also 
important to note that, for the cooperating team or group, there are chances of one or more members not cooperating at the terminal 
stage as long as they can win the game for themselves. This would be a situation wherein the number of strokes or tokens left is less than 
β, hence, the team member or player would rather strike them all out than leave any stroke for the next group member or team player 
irrespective of the general agreement held in the cooperating group. 

Relaxing assumption one (1) and given that it is one of the Beta Limits Sum (BLS) strategy model parameters, however, makes the 
optimal strategy of the game rather complex. However, the BLS can still be applied. Applying the BLS strategy when n> 2 ∀ β is to 
ensure that the number of strokes left after you take your decision (strike out stroke(s)) is always a multiple of the sum of your decision 
and other players’ decisions. If any player can maintain this strategy, they are guaranteed to win the game. Maintaining this strategy all 
through the game is rather difficult since you have no control over other players’ decisions thus, the total number of strokes left will not 
always be a multiple of the sum of your decision and other players. Therefore, playing the BLS strategy, in this case, entails some level 
of deviations from this optimal strategy path but a rational play is saddled with the responsibility of seeking out this path when 
available to win the game. When assumptions two (2) and three (3) are relaxed, predicting the player with the mover advantage and 
the winner of the game is very much random due to irrationality and discontinuity of rationality. Relaxing assumption four (4) suggests 
a simultaneous GOS. This is seemingly impossible to play the GOS as a simultaneous move game. Relaxing assumptions five (5) and 
eight (8) will change the basic principles of the GOS and possibly become another game entirely. Based on assumption one (1), 
assumption six (6) will always hold. However, when we relax assumption one (1) then assumption six (6) fails i.e., there will not always 
exist a mover advantage for all versions of the GOS when n> 2. Relaxing assumption seven (7) makes strategic decision-making useless 
in any GOS since the winner is already known from the beginning of the game (i.e. will of the gods) even when assumption one (1) is 
relaxed. Assumptions nine (9) and ten (10) are key in building the Beta Limits Sum (BLS) model, relaxing these assumptions will 
outrightly make the BLS strategy inefficient and ineffective. 

4.5. Simulation experiment results 

Computer-based simulation exercises or experiments were conducted to further strengthen the BLS strategy model in optimally 
solving the finite sequential GOS. 10,000 simulated GOS were solved using the BLS model. In these simulations, the total number of 
strokes, ϑ, and the maximum number of strokes per node, βmax, are randomly sampled. To include different scenarios, βmax is randomly 
simulated without replacement while ϑ is randomly simulated without replacement.2 In these simulations, the parameters follow 
uniform distributions described as βmax ∈ [1, 500] and ϑ∈ [501,2000]. 

4.5.1. Benchmark BLS model algorithm scenario 
The benchmark BLS model algorithmic steps are itemized below.  

1. Set k = 1  
2. Simulate βmax ∼ U[1, 500] and ϑ ∼ U[1, 500] to design a finite sequential GOS.  
3. Let the opponent’s decision, Yk ∼ Bin(n= 1,p= 0.5, trials = βmax).  
4. Apply the BLS mover advantage identification algorithm.  
5. Decide the first and second mover at the initial node based on the BLS result in step 4. 

2 Suffices to mention that the results are not affected, in anyway, when βmax is randomly simulated with replacement and ϑ is randomly simulated 
without replacement. This is also the case, when both ϑ and βmax are simulated randomly with and without replacements. In all these designs, the 
BLS strategy model solves the GOS perfectly. 

D.I. Okorie and J.M. Gnatchiglo                                                                                                                                                                                    



Heliyon 9 (2023) e23073

8

6. Apply the BLS mover advantage maintenance algorithm until the GOS is solved (or won).  
7. Repeat step 1 to step 6 for k∈ [2,3,…,10000]. 

This is the benchmark scenario or business-as-usual scenario since the decision of which player moves first or second is strictly 
determined by the BLS model. As such, deviations from the optimal solutions of each GOS are expected to be zero. That is to say that, 
the BLS is expected to win for all the times the GOS is simulated. Based on the 10,000 simulated GOS, the BLS model solved and won 
every single simulated GOS. Some of the solved GOS simulated results are presented in Table 1. Table 1 shows: the total strokes, the 
maximum strokes per node, the advantaged mover, the initial node decision, and the BLS solutions. Based on the simulation results, the 
BLS solves and wins all the 10,000 simulated GOS. Only four (4), out of the 10,000 simulated GOS are reported in Table 1. 

4.5.2. BLS model without conversion algorithm scenario 
The benchmark BLS model in subsection 4.5.1does not utilize the conversion algorithm in all the 10,000 simulations because it 

optimally decides whether to be the first or second mover. Therefore, it always has the identified mover advantage and thus, follows 
the BLS optimal path. In this scenario, this assumption is relaxed. That is to say, the BLS identification algorithm is truncated to allow 
the BLS strategy model to solve each GOS without the choice of mover advantage. To further make this scenario interesting, the BLS 
conversion algorithm is also truncated. This makes the BLS strategy unable to identify the opponent’s rationality discontinuity and take 
optimal actions, to convert the opponent’s mover advantage. The algorithmic steps used in this scenario are as follows.  

1. Set k = 1  
2. Simulate βmax ∼ U[1, 500] and ϑ ∼ U[1, 500] to design a finite sequential GOS.  
3. Apply the BLS mover advantage identification algorithm  
4. Let the opponent’s decision, Yk ∼ Bin(n= 1,p= 0.5, trials = βmax).  
5. Apply the BLS mover advantage maintenance algorithm until the GOS is solved (or won).  
6. Repeat step 1 to step 5 for k∈ [2,3,…,10000]. 

The different simulation results are presented in Table 2. It is important to mention that from steps 4 and step 5, the BLS model is 
only applied as either the first or second mover/player while the computer remains the second or first mover/player, respectively, for 
all the simulated GOS. In Table 2, category A shows the results when the BLS maintenance strategy is applied as the second mover/ 
player while category B is when the BLS maintenance strategy is applied as the first mover/player. As expected and based on the results 
in Table 2, for all the simulated GOS, the BLS model optimally solved all the simulated games when second-mover advantaged GOS 
games were stimulated but failed to optimally solve the games when first-mover advantaged GOS games were simulated, shown in 
category A. This is mainly because of the truncation of the BLS conversion algorithm. The BLS maintenance algorithm, thus, becomes a 
response action to an opponent’s decision. Thus, when second-mover advantages exist, the BLS maintenance algorithm performs 
optimally. Conversely, the same simulated GOS games are played the second time but alternating iteration or step 3 and iteration or 
step 4. Now, the BLS model optimally solved all the simulated games when a first-mover advantage exists but failed to solve the games 
with second-mover advantages, as shown in category B. This is mainly because only the BLS conversion algorithm is truncated, 
thereby, the applied BLS model still identified mover advantages. Therefore, the FM and SM advantaged simulation results in Table 2, 
category A, are exactly the opposite when step 4 and step 5 are interchanged, making the first mover player apply the BLS model while 
the computer becomes the second player, in Table 2, category B. In general, alternating the first and second mover of any simulated 
GOS game will be solved optimally by the BLS model (without conversion algorithms) as a first (second) mover or player when the first 
(second) mover advantage exists in the finite sequential GOS. Therefore, the results in Table 2 further confirm that the BLS strategy is a 
complete set algorithm. That is, winning a GOS is not guaranteed when the BLS strategy model is applied in parts. To apply the BLS 
strategy model, the identification, maintenance, and conversion algorithms must be applied simultaneously. This is further buttressed 
in the next subsection. 

4.5.3. BLS model with conversion algorithm scenario  

1. Set k = 1  
2. Simulate βmax ∼ U[1, 500] and ϑ ∼ U[1, 500] to design a finite sequential GOS.  
3. Randomly decides the First and Second player  
4. Apply the BLS mover advantage identification algorithm  
5. Let the opponent’s decision, Yk ∼ Bin(n= 1,p= 0.5, trials = βmax).  
6. Apply the BLS mover advantage conversion algorithm  
7. Apply the BLS mover advantage maintenance algorithm until the GOS is solved (or won).  
8. Repeat step 1 to step 7 for k∈ [2,3,…,10000]. 

This simulation scenario only added the BLS conversion algorithm, while introducing a random choice or decision of who plays first 
or second (step or iteration 3). The results for this scenario are synonymous with that of the benchmark scenario presented in Table 1. 
That is to say that, the BLS strategy model solves all the simulated finite sequential GOS irrespective of whether it is applied when a 
mover advantage exists or not. This is due to the application of the mover advantage conversion algorithm which converts the op-
ponent’s mover advantage immediately the opponent makes an irrational decision at any decision node. It is important to state that the 
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computer, the opponent, always makes irrational decisions at every node since its choice or decision follows a binomial distribution 
with βmax trials. A couple of these BLS strategy model solutions are presented in Table 3. 

4.6. Application in resource economics 

The BLS model or strategy could be adopted and applied in several decision-making units and areas. These areas and units may 
include business or firm units, household units, environmental economics, resources economics, health economics, competitive 
markets, monopolistic competitions, duopoly, oligopoly, duopsony, oligopsony, etc. In any area where sequential decisions are made 
to optimize (maximize or minimize) payoffs, as a group or individually, the BLS strategy can be applied. This is because the BLS 
strategy deals with the identification, maintenance, and conversion of mover advantages in a sequential game, using the game of 
strokes as an example. The application of the BLS model only requires that there is, at least, a rational player or group of players acting 
as a unit in a sequential move game. As such, the BLS model identifies and shows the optimal path strategy algorithms towards 
optimizing payoffs given continuity or discontinuity of rationality. For an illustration of the application of the BLS model, resource 
economics scenarios are highlighted and discussed. 

Resource economics deals with the optimal allocation of economic and natural resources amongst uses. This allocation is dynamic 
and time-variant as it requires adjustments to maintain the optimal path over time [59]. As such, one could view it as a sequential game 
played over periods. Generally, some good examples of economic resources are energy and environmental resources [60]. Environ-
mental resources include water resources, land resources, and air resources. There are several uses for these resources such as energy 
sources, agriculture, building and construction, health, living well-being, etc. As such, the optimal allocation of these environmental or 
economic resources is crucial for the concerned authorities. Based on the developed BLS strategy, an optimal strategy for the allocation 
of these economic or environmental resources includes strategic actions like cooperation. As such, all the players act as a single unit to 
achieve and maximize one target, goal, benefit, or payoff. For instance, considering the climate change scenario, every economy is 
advised to take emission mitigating or abatement actions to reduce the overall level of emission in the economy over time [61–64]. 
Given this payoff or target or benefit or goal, the users of these environmental or economic resources (water, land, and air) are better 
off when they cooperate and work as a team in the use of the allocated resources to achieve reduced levels of emissions while using 
these resources [65]. 

Nonetheless, given a scenario where a player or group of players acting as a unit, decides to pursue other different targets, the 
mover advantage of such player or unit could be identified and converted to their detriment or loss, as detailed by the conversion 
algorithm of the Beta Limits Sum (BLS) strategy. This could be done in several ways which may include terminating or restricting the 
access of the player to the public economic (and environmental) goods or resources such as water, land, etc. Such actions are geared 
towards identifying an opponent’s mover advantage and terminating or converting it to the opponent’s detriment. As such, the general 
and common goal or payoff or objective can be achieved or actualized. 

5. Conclusion 

In conclusion, this work sets out to not only validate the existence of rationality in the behaviour of strategic decision-makers but to 
establish the extent of rationality in the players’ decision behaviour and to show the chances and possibilities of mover advantage 
conversion in a sequential move game. This paper, therefore, provides answers and evidence to the existence of optimal strategic 
decisions when mover advantages are identified as well as strategic conversion mechanisms for a mover advantage when a supposed 
advantaged player fails to identify and maintain such advantages in a sequential move game (GOS). The proposed Beta Limits Sum 
(BLS) model or strategy, as developed in this paper, can also be applied in other fields and aspects of sequential move competitions 
such as competitive markets, monopolistic competitions, duopoly, oligopoly, duopsony, oligopsony, etc. 

There were some limitations encountered throughout this paper. For instance, this study was initially designed to be implemented 
in an economic experimental laboratory where graduate and undergraduate students will be randomly sampled to play the finite 
sequential GOS. The finite sequential GOS experiment was designed using ZTree for the laboratory experimentations. These economic 
laboratory experiments of the BLS strategy model would allow for an empirical contribution of the proposed BLS model. This is because 
subjects’ decisions at each node will be recorded and collected as primary data for analyses. From the analyses, we would be able to 
identify whether or not the subjects were able to identify their mover advantages at every node and whether they could convert an 
opponent’s advantages to their benefits. Furthermore, statistical tests like the assumed rationality of the subjects at each stage would 
be conducted. In summary, the laboratory experiments aimed to first, ascertain whether or not, players are rational enough to identify 
their mover’s advantages and secondly, whether or not, a rational player could convert their opponent’s advantage to their benefit 
given the discontinuity of rationality. The intended subjects were both undergraduate and graduate students of Xiamen University 
taking Game Theory and Microeconomics courses. To incentivise the experiment, we designed the payoffs to be an increasing function 
of the total number of strokes in each GOS. As such, the subjects would prefer to play GOS with higher strokes which would reveal their 
rationality on identifying, maintaining, and converting mover advantages. Our hypotheses include: few subjects will be able to identify 
and maintain their mover advantages given lower ϑ, the ability to identify mover advantages decreases in ϑ, and the conversion of 
mover advantages is less likely irrespective of the size of ϑ. 

Due to circumstances beyond the authors’ control, this laboratory experiment was not implemented. One of the major reasons is 
lack of funding. Therefore, as a recommendation for future studies, researchers could use randomized and controlled laboratory 
experimental data to empirically test whether or not players can identify, maintain, and convert mover advantages given different 
levels or numbers of strokes in the GOS. This current paper is mainly an algorithmic and simulation contribution to the field of Game 
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Theory. A step further will include an empirical contribution and a theoretical contribution with formal proofs of the BLS model. 
Amongst other things, a theoretical contribution should include the probability distribution of the BLS model that describes the 
likelihood of irrational decisions of a player at every node of the finite sequential GOS (discontinuity of rationality) and the likelihood 
of mover advantage conversion. This theoretical contribution will support and strengthen both the algorithmic BLS model contribution 
and the empirical contribution of the BLS model. 
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Appendices.  

Table 1 
BLS Model Solutions  

ϑ βmax AM IND BLS Model Solution     

Nodes FM - BLS SM 
1409 199 First Mover 9 1 9 100     

2 118 82     
3 109 91     
4 110 90     
5 105 95     
6 99 101     
7 94 106     
8 100 *     
Nodes FM SM - BLS 

1645 234 Second Mover 0 1 119 116     
2 119 120     
3 115 119     
4 116 123     
5 112 128     
6 107 124     
7 111 116     
Nodes FM - BLS SM 

1964 186 First Mover 94 1 94 93     
2 95 92     
3 87 100     
4 81 106     
5 110 77     
6 98 89     
7 101 86     
8 90 97     
9 88 99     
10 98 87     
11 94 * 

(continued on next page) 
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Table 1 (continued ) 

ϑ βmax AM IND BLS Model Solution     

Nodes FM SM - BLS 
684 341 Second Mover 0 1 178 180     

2 162 164 

The Advantaged Mover (AM) is identified by the BLS model. The Initial Node Decision (IND) follows the BLS model after the mover advantage has 
been identified.  

Table 2 
BLS Model Solutions without Identification and Conversion Algorithms  

Simulations FM Advantaged Simulations SM Advantaged Simulations 

Category A – BLS Second Mover  
Win Loss P Total Win Loss P Total Win Loss P 

K = 500 7 493 1.4 493 0 493 0 7 7 0 100 
K = 1000 13 987 1.3 987 0 987 0 13 13 0 100 
K = 2000 24 1976 1.2 1976 0 1976 0 24 24 0 100 
K = 5000 70 4930 1.4 4930 0 4930 0 70 70 0 100 
K = 7000 72 6928 1.03 6928 0 6928 0 72 72 0 100 
K = 10000 124 9876 1.24 9876 0 9876 0 124 124 0 100 
Category B – BLS First Mover 
K = 500 493 7 98.6 493 493 0 100 7 0 7 0 
K = 1000 987 13 98.9 987 987 0 100 13 0 13 0 
K = 2000 1976 24 98.8 1976 1976 0 100 24 0 24 0 
K = 5000 4930 70 98.6 4930 4930 0 100 70 0 70 0 
K = 7000 6928 72 98.97 6928 6928 0 100 72 0 72 0 
K = 10000 9876 124 98.76 9876 9876 0 100 124 0 124 0 

The number of wins using BLS (Win), the number of losses using BLS (Loss), and the proportion of the times the BLS model won the simulated GOS 
games (P) are reported for the overall simulations, the first mover (FM) advantaged simulations, and second mover (SM) advantaged simulations. The 
overall simulations are grouped into the FM and SM-advantaged simulations. P is reported in percentages.  

Table 3 
BLS Model Solutions with Identification and Conversion Algorithms  

ϑ βmax AM IND BLS Model Solution     

Nodes FM SM - BLS 
1347 408 First Mover 120 1 220 309     

2 198 211     
3 199 210     
Nodes FM - BLS SM 

1320 329 Second Mover 0 1 167 163     
2 164 166     
3 167 163     
4 161 169     
Nodes FM SM - BLS 

1351 220 First Mover 25 1 114 132     
2 101 120     
3 120 101     
4 105 116     
5 110 111     
6 124 97     
Nodes FM – BLS SM 

1624 202 Second Mover 0 1 110 93     
2 102 101     
3 106 97     
4 95 108     
5 100 103     
6 112 91     
7 92 111     
8 99 104 

The reported BLS strategy model solutions are for the cases where the simulated GOS has a first (second) mover advantage but the BLS model is 
applied for the randomly selected second (first) mover.   
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Fig. 1. Game of Strokes (GOS), Example 1.   

Fig. 2. Decision Trees for GOS, Example 1.   

Fig. 3. Game of Strokes (GOS), Example 2.  
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