Learning in Nigeria's Schools: Lessons from In and Out of School Children and a Potential Pedagogical Function

Motivation

"if you cannot measure it, you cannot improve it" Peter Ducker

- Like most developing countries, Nigeria is mobilizing national and international efforts to meet the sustainable development goal of inclusive and quality education for all.
- Learning profiles allow for tracking of SDG 4 and assessment of optimal policy response.
- Existing learning profiles in Nigeria are based on Adult Retrospective Surveys using Demographic Health Survey and Multiple Indicator Cluster Survey (see Oye, Pritchett, \& Sandefur, 2016).
- How Current? Based on 15-25years with only primary education.
- Test mismatch: It tests ability to read a simple sentence about everyday life
- In-school children are excluded
- Nigerian Education Data Survey is a novel dataset that addresses some of these challenges.

About NEDS Dataset

- National Education Data Survey (NEDS) is the most comprehensive, disaggregated and nationally representative survey on basic education in Nigeria.
- 2015 NEDS is a follow up to the 2013 Demographic and Health Survey (DHS), which is conducted to collect additional data on education from a subset of DHS households.
- The survey has two modules: Parent/Guardian and school age children.
- The same questions were asked of 84832 in-school (pre-primary, primary and junior secondary school) and out-of-school children.

Study Sample

- We use 2015 NEDS to generate a contemporaneous cross-sectional learning profile.
- Focus on pre- and primary school children and out-of-school children from age 5 to 11 years (based on official primary school age).
- The analysis covers a total of 51,180 children.

60,000

Breakdown of Numeracy and Literacy Assessment

Numeracy assessment	Literacy Assessment	Expected Grade to attain mastery	Expected Age to attain mastery
- Identification of numbers - Addition of numbers which sum to less than 10. E.g. 2+3	- Ability to read words - Ability to read complete sentences	- Nursery \& Primary 1	- 6 years
- Addition or subtraction of double-digit problem. E.g. 17+13	- Basic comprehension E.g. Answer True/False to one of the three sentences shown	- Primary 2	- 7 years

Learning profile: Learning profile by Grade

Competence Literacy by Grade

Value addition from Schooling

Double digit math problem

Comprehension

Learning profile by Age (Includes Out of School)

Competence in Numeracy by Age Group

Competence Literacy by Age Group

Learning profile for In-school and Out of school Children

Identification of numbers

Single Digit Math Problem

Double Digit Math Problem

Variation in Learning between in-school and out of school children

Proficiency in reading Words

Proficiency in reading sentences

Basic Comprehension

Composite Index of learning

- We develop a composite score by aggregating the students' performance in literacy and numeracy
- For literacy, each child was asked
i. three questions to test their ability to read and identify words
ii. three questions to test their ability to read complete sentence
iii. a question on the comprehension of one of the sentences in (ii).
- For numeracy, each child was asked
(i) two questions on the identification of numbers
- (ii) two questions on solving of single digit addition problem
- (iii) two questions on solving of double-digit addition and subtraction problem.

Composite Index of learning

The composite index is a simple sum of all correct answers to the 13 questions asked.

We set a benchmark of 11 correct answers as the pass mark

Pass rate (\%) by Grade

Modeling and Simulation

We simulate learning the items on the test using a potential pedagogical function (See Pritchett and Beatty (2012); Kaffenberger and Pritchett)

We model learning (L) for pupil, i, in grade, p, as:

$$
L_{\left(s_{i}, h^{(\max , p)}, c^{p}, r^{p}\right)=}^{h^{(\max , p)}-\left[r^{p} *\left|\left(c-s_{i}\right)\right| * h^{(\max , p)}\right]} \begin{array}{cc}
\text { if } 0 \leq s_{i}<13 \\
0 & \text { if } s_{i} \geq 13
\end{array}
$$

h and r are calibrated to match the mean score and standard deviation after each grade
c is the percentile that gains the most from instruction

Performance for different grades

PPF for Different Grades

Baseline Result versus Dropout variation

Baseline Result versus Increased Width

Baseline Result vs Improved Teaching

Baseline Result versus Slower Pace

Baseline Result versus Targeting Class mean

Baseline vs Targeting at Class Means

Baseline Result versus Targeting out of school mean

Baseline vs Targeting Out of School Mean in Grade 1

Thank You

