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It is rather a norm for researchers to directly use the log difference of an asset price to compute returns. Just like
using In(X + 1) to avoid taking the natural logarithm of zero(s). However, this log returns is but a conditional
approximation of the actual returns. Nonetheless, can log difference approximations and the In(X + 1) common
practices produce BLUE estimates? Using the log return as an example, this study discusses the approximation
nature and conditions for using the log difference approximation both for the interest regressor and control
variables. These conditions are; that both the sample average and variance of the original series tend to zero.
When these conditions are not met, the log difference approximation is, in fact, not a good approximation and
biases OLS causal estimators. When the conditions are met, it produces unbiased, consistent but less efficient
estimators. Thereby making the estimates less precise and less accurate. Nonetheless, this is true for a log dif-
ferenced interest regressor(s) and control variables, when it correlates with the interest variable(s) and explains,
in part, the dependent variable, even in large samples. Similarly, the common use of In(X + 1) biases the esti-
mation of the true causal effect, even the intercept term, except when X tends to infinity. A robust solution of
using non-zero subsamples, against In(X + 1), produces unbiased and consistent estimators for the true causal
effects under the causal assumptions. These biasedness, inconsistencies, and inefficiencies do not disappear in
large samples. Finally, both ex-ante and ex-post test statistics are discussed, however, the ex-post estimation test
statistic is recommended to confirm both the choice of using log difference approximation and that of using
In(X + 1), in an empirical data causal regression analysis. Ideally, researchers should ensure the conditions for
using the log difference approximation are met. Otherwise, these approximations and practices produce biased,
inconsistent, and inefficient results, even in large samples, leading to misinformed policy implications.

1. Introduction

If the return of an asset is 5 %, the logarithmic approximation of
return (log return) will have an error of 0.121 percentage points. If the
return of an asset is 10 %, the log return (log difference) approximation
will have an error of 0.469 percentage points. On the other hand, if the
return of an asset is —5 % (—10 %), the log return will have an error of
0.129 (0.536). This shows the asymmetric nature of the logarithmic
approximation errors. That is, the log return errors for negative returns
outweigh those for positive returns. These errors increase in the asset’s
return, that is, the errors increase as the asset’s returns increase. For
asset returns, r; € [0,0.5], Fig. 1 shows the error of log return, x;.

Nonetheless, these errors are not the only problems applied econome-
tricians and/or empirical researchers face. A more serious problem is
that log returns, instead of using the actual returns (Okorie, 2023;
Okorie, Bouri, & Mazur, 2024; Okorie & Lin, 2023), can render the OLS
(Ordinary Least Squares) estimators biased, inconsistent, and inefficient.
This problem intensifies when the sample average and variance of the
asset’s returns do not tend to zero. Beyond this, the bias, inconsistency,
and inefficiency of the log return OLS estimator get worse in high-
variance asset return samples and the presence of heteroscedasticity.
Besides, even when the asset returns’ sample mean and variance tend to
zero, the OLS estimators of log returns are less efficient, that is the OLS
estimators might not be BLUE (Best Linear Unbiased Estimator). These

Abbreviations: BLUE, Best Linear Unbiased Estimator; OLS, Ordinary Least Squares; OVB, Omitted Variable Bias; CLT, Central Limits Theory; LLN, Law of Large
Number; DGF, Data Generating Function; OV, Omitted Variable; CV, Control Variable.
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issues of log approximation are illustrated in this study using log return
as an example.

Log return or log differencing of prices, an example of log approxi-
mation, is one of the common practices in empirical studies. Reex-
amining common practices or norms is always a vital advancement
strategy. In fact, without these reevaluations, Halvorsen and Palmquist
(1980) would not have discovered the long-standing misinterpretation
of semilogarithmic log-linear models with dummy regressors. After their
paper, researchers began to interpret their semilogarithmic models with
caution. Efforts are still being made to address other common practices
(Bellemare & Wichman, 2019; Mullahy & Norton, 2023; Nick, 2023). In
the same light, this paper seeks to call the attention of researchers to re-
examine and re-evaluate the use of log-return or log-price-difference
approximation for asset returns. This is suicidal and distorts valid
inference when the conditions for using log-difference approximation
are not met. Thus, log-differencing an asset’s price can produce
misleading results and lead to invalid inferences, even in large samples.
In the past, most studies have ignored the conditions for log approxi-
mations. Examples may include, but are not limited to, Duarte-Silva and
Kimel (2024), Panagiotidis, Papapanagiotou, and Stengos (2024), Long,
Chiah, Zaremba, and Umar (2024), Liu and Kang (2024), Wong (2023),
Domenico, Livan, Montagna, and Nicrosini (2023), Blau, Griffith, and
Whitby (2023), Chiang and Chen (2023), Simonato and Denault (2023),
Ni and Wang (2023), Ausloos, Ficcadenti, Dhesi, and Shakeel (2021),
etc. On the other hand, some studies like Tomlinson, Greenwood, and
Mucha-Kruczynski (2024), and Herley, Orlowski, and Ritter (2023),
used log return and showed that the mean and variance of the log
returns are sufficiently close to zero.

However, there are still a few concerns. Firstly, the mean and vari-
ance of the log return being sufficiently close to zero are not the con-
ditions for using the log return approximation. Secondly, log returns
always under-predict or under-approximate the actual returns. As such,
having the mean and variance of the log return close to zero does not
necessarily imply that the mean and variance of the actual return (not
the log return) are sufficiently close to zero (Okorie, Gnatchiglo, &
Wesseh, 2024); which are the conditions to approximate returns with
log returns. Nonetheless, the OLS estimates of the log return approxi-
mations are relatively inefficient (less precise and less accurate)
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compared to that of the actual return even when these conditions are
met. Another common research practice, which is not addressed in this
current study, is to add one to a variable and take the natural log of the
sum (Dong & Yu, 2023; Fang, Tian, & Tice, 2014; Liu & Kang, 2024;
Pungaliya & Wang, 2023; Zhang, 2022). Some researchers claim to
follow published papers from top journals, such as Fang et al. (2014), in
this practice while others claim that this is done to be able to take the
natural logarithmic value of zero. The challenge is (Xi/t + 1) — Xy #In
(Xi/t + l) — InXj;,. In fact, the gap or difference of the former remains
constant while that of the latter diminishes as X; increases. As such, this
practice, in earnest, changes the distribution of X;/;, as examined in the
study. Implying that the intended causal effect of X; is no longer esti-
mated but that of a different variable altogether, In(X;, +1). If the
undefined ln(Xi/[ = O) is the problem, as many researchers claim, a
traditional and robust approach is to remove i/t for which X;/; = 0 from
the sample. This would mean removing the entire data points of an
entity in a panel dataset, X;;. As long as the sample remains large, the
true causal effect of X/, is estimated correctly and the Central Limits
Theory (CLT) applies for valid inferences based on the distribution of the
estimators. Otherwise, as long as the sample is (as if) random and large
(n—o0), different samples (and sizes) can estimate the true causal effects
under the causal effect assumptions. So, it really does not matter which
data point, unit or entity is removed from the sample when the sample is
(as if) random and large. The true causal effects can be estimated using a
non-zero subsample to avoid taking the natural log of zero. Thus, adding
one and taking a log is not necessary. Bellemare and Wichman (2019)
have initiated a discussion on this.

This study only concentrates on the use of log returns against other
approaches for computing asset returns. This is because the log return is
a log difference approximation and this study shows and discusses the
consequences of log difference approximation, howbeit, in empirical
research. However, by no means is this study claiming that the general
use of log approximations is suicidal and problematic. Logarithms, in
itself, is a powerful tool that has simplified working with numbers,
especially large numbers and reduces data variances (Hao, Peng, & He,
2023; He, Guo, & Yue, 2024; Li, Nie, Ruan, & Shen, 2024; Zhang, Su,
Sun, Zhang, & Shen, 2015). The use of logarithmic returns in derivative
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Fig. 1. log return errors.
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asset pricing of options and futures is cool and appropriate. This is
because the actual values or magnitudes or payoffs of the assets are not
(or are less) relevant relative to their relative values or magnitudes or
payoffs. Secondly, even when the actual magnitude or payoff of an asset
matters, the actual return and log return consistently move in the same
direction, thereby giving the same sign despite the possible discrep-
ancies in magnitude or payoff. Beyond these, the logarithmic function is
used for model linearization, capturing several nonlinear functional
form model relations, estimating elasticities, reducing variances, etc. (Li,
Nie, et al., 2024; Tian, Li, & Cheng, 2022). However, the issues discussed
in this study become a salient concern when the actual magnitudes or
payoffs are relatively important or relevant. As such, caution is required
to not invalidate and distort valid inferences.

In theory and practice, the log return approximation is never equal to
return. It only approximates returns when the returns tend to zero. Also,
the prediction or approximation error of log return increases as returns
move away from zero. The log return always under-predicts the actual
return of an asset. As such, the log difference is only a conditional
approximation of return. In contribution, this article draws researchers’
attention to the possible errors of using log approximations in empirical
data regression analyses. Particularly, the use of price log differencing to
approximate asset returns (log return), the use of log difference on
control variables to measure growth rate or percentage change, and the
common practice of adding one to a variable before taking natural log to
avoid the log of zero. These illustrations buttress the issues, conse-
quences and conditional use of log difference approximations. Never-
theless, this study shows that these issues are not limited to the
conditional strong or weak approximations of return or on other (con-
trol) variables but include the biasedness and inefficiency of OLS esti-
mators when the (necessary and sufficient) conditions of using log
difference approximation are not satisfied. Suffice it to say that a zero
mean return is only a necessary but not sufficient condition for a log
difference approximation. A sufficient condition is that the variance (or
standard deviation) of the return also tends to zero. These are illustrated
using the Monte Carlo simulation and empirical data results in Section 3.
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2. Data and model

2.1. The log difference approximation

P —P,

P, €8]

rn=8&=

The return of an asset is by definition, the change in the current value
of an asset relative to its past value. The value of an asset is often
captured by its price. As such, return is typically a percentage change or
growth rate. Therefore, Eq. (1) captures the actual or true return while
Eq. (2) is the log difference approximation of Eq. (1).

P, — P,
Flg) = InP, — InPy_, — ln<1 +ﬁP7”> —In1+g) - x @
t—1

The question becomes, is x, equal to r, or directly put, is ln(l +

%) equal to 2 o }j 1? Generally, these two are not equal but In (1 +

P‘;f—f’;*) and approximate #7%= only when 5F=1—0 nonetheless. That is,

the log difference approximation of return only works well (i.e. becomes
a good approximation) when the return itself is very close to zero,
otherwise, the log difference approximation is bad and should be avoi-
ded. To appreciate and romance this approximation condition, let’s
employ the Taylor series proximation for eq. (2), up to the 6th
approximation, as shown in eq. (3). In eq. (3) the log difference function,
F(g:), is approximated at a constant a. These Taylor approximations of
the log difference function are illustrated in Fig. 2 and Fig. 3 forg e [ —
2,2] and a € [ — 0.99999, 2.

i e (153) -3 (50) <5 (50 5050,

l1/g—a\> 1/g—a\®
+5(1 +a) 76(1 +a> +
Fig. 2 shows the actual values of g, with log difference approxima-

tions or predictions of g, with the first and second Taylor approximation
predictions of the log difference function. Fig. 3 shows the rest of the
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Fig. 3. Returns, Log Difference, and Taylor approximations.

Taylor approximation predictions up to the fifth approximation. There
are a few outstanding facts from Figs. 1 and 2. These include that the log
difference approximations, x, are never equal to the actual growth, g, but
can be a good approximator only when g—0. Secondly, there are no log
difference approximation predictions when g < — 1. The log difference
approximation prediction errors increase (the gap between the red and
black lines) as g goes away from zero. Thirdly, log differences always
under-predict the actual growth or return of an asset. Conversely, the
Taylor series approximations exist for g < —1 and it is capable of over-
predicting the actual return. This overprediction diminishes for higher-
order Taylor approximations. These make the log difference a condi-
tional approximator of return. To use log difference, one needs to ensure
that each period’s return is closer to zero. To guarantee that each pe-
riod’s return is closer to zero, the mean and variance (or standard de-
viation) of the asset’s return should tend to zero. That is, the mean being
closer to zero is necessary but the variance should be sufficiently closer
to zero too. Nevertheless, the safest approach is to compute the return
using Eq. (1).

Given that the approximations and predictions of returns, using the
log difference, work better when the return is around zero, to minimize
the prediction error, we can take the limit of eq. (3) as a tends to 0, a—0,
to derive eq. (4). When the mean and variance of an asset’s return are
not sufficiently close to zero, log difference produces biased, less precise
and less accurate (i.e., less efficient) OLS estimates which leads to
misleading results, inference, and conclusions. This is discussed in detail
in the subsequent section.

1, 1, 1, 1. 14
lmF(g) =g —58" +38 — 48" +58 — & + - ©

2.2. How small is small?

The necessary and sufficient conditions to use the log difference
approximation, like the log return, is that the mean and variances are
small (tend to zero) respectively. Thus, the question becomes how small
should the mean and variance of an asset’s return be before the log re-
turn approximation can yield an unbiased and consistent causal esti-
mate? Based on the simulation results in section 3.1, a mean and

variance of at most x < |0.1%| and 6% < 0.1%? respectively can produce
unbiased and consistent causal estimates when the log return approxi-
mation is used. Moreover, the grid search results in Fig. 4 and Fig. 5
confirm that return and log return causal effect estimates coincide and
converge when y = 0 and 6% = 2.6%2 respectively. This convergence
property is also true for different sample sizes, n. Therefore, one could
test whether to use log return by either of these two pairs of mean and
variance tests. However, all the tests for whether to use log difference
approximation presented in this study are for the mean and variance
pair, 4 = 0 and 62 < 2.6%?2. That is, the null hypothesized parameter set
is (4o = 0,06% < 0.026?) for testing the null hypothesis of using the log
difference approximation. This implies that log difference approxima-
tions like the log return can be used to estimate the true unbiased and
consistent causal effect of the interest variable(s) in a regression model
when there is no evidence against this null hypothesis, i.e., this null
hypothesis is not rejected at a prespecified test size or level of signifi-
cance, «.

To further illustrate the convergence in the causal effects of return
and log return when y =0 and ¢® = 2.6%2, Table 1 presents the
simulation results for return and log return based on these mean and
variance values and under homoscedastic error variance. Based on the
results in Table 1, one can see the striking similarities between the co-
efficients and their standard errors for return and log return. These
findings are also valid under heteroscedastic error variance. It’s
important to note that these estimates, both from return and log return,
are unbiased and consistent. Implies a rule of thumb to use either the
actual return or the log return when their causal effects have no sig-
nificant statistical difference (i.e., the causal effects are statistically
equal or statistically not different from each other), otherwise, use the
actual return to estimate the true causal effects.

Data Generating Function (DGF) is Y, =05+502r +e
e; ~ N(0,12). The OLS averages & bootstrap standard errors are reported.

and

2.3. When can log difference approximations be used in causal regression
analysis?

A possible straight response to this question is; when both the mean
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Fig. 5. Another grid search for the hypothesized y and 6, n = 5000

and variance of the original series are simultaneously close to zero. This
means testing a joint or simultaneous hypothesis on the location (first
moment) and scale (centralized second moment) parameters of a uni-
variate sample. A handful of tests have been proposed for this simulta-
neous test for one sample (Arnold & Shavelle, 1998; Chen & Gao, 2011;
Choudhari, Kundu, & Misra, 2001; Park, 2015; Pesarin & Salmaso, 2010;
Rao, 1973) and two samples (Duran, Tsai, & Lewis, 1976; Lepage, 1971;

Lepage, 1973; Neuhauser, Leuchs, & Ball, 2011; Rublik, 2009). For a
random (stationary) sample, Xi, X5, X3, ..., X,, drawn from a homosce-
dastic and normally distributed population with mean, x4, and variance,
62, from the parameter space defined as 6 =
{0 = (u,0%) :pe %, c*e#"}, and we are interested in testing the

simultaneous or union and intersection null and alternative hypotheses:
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Table 1

re ~norm(u = 0,6 = 0.026) and var(e;|r;) = o?
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N = 100,000 iterations

n=>5 n =20 n =30 n =50 n =100 n = 500 n = 5000 n = 10000

Actual Return (1, from eq. (1))
Bo 4.995473 5.001184 4.999277 4.99717 4.999949 4.999585 5.000067 5.000052
se(fjo) 0.554667 0.229139 0.187322 0.144339 0.100725 0.045122 0.014112 0.009964
B 50.08972 50.28836 50.09036 50.14718 50.16565 50.21757 50.1984 50.19901
se(ﬁl) 27.0433 9.518786 7.361725 5.618159 3.918977 1.75251 0.544311 0.389889

Log Difference (x, from eq. (2))
7}0 5.005544 5.016367 5.015037 5.013504 5.016588 5.016486 5.017032 5.017015
se(ﬁo) 0.554736 0.22919 0.187392 0.144421 0.100789 0.045146 0.014122 0.009966
B 50.06572 50.24591 50.0421 50.09734 50.11737 50.16638 50.14763 50.14788
se(B1) 27.03595 9.519329 7.366975 5.621756 3.919652 1.753298 0.544389 0.390152

Hy : (4,6%) = (po,05) =00 = {u = po} N {6 = 6%}

Hi:(u,6%) €000 ={u+#pytU{c*#os}

The likelihood ratio testing technique, defined in eq. (5) with density
function (Choudhari et al., 2001), Eq. (6), have been shown to test this
hypothesis where 0 < x < o0 and a;(x) < a,(x) are the roots that solve
the equation nint — t+ x — nln+n = 0.

l(ﬂO? 620|x> (5)

M) = SUD (.02 1x) ¢ ol(1, 6%])

1

»—0.5x+0.5n(Inn—1)

) /ﬂz(x) 1
x) = e
g 205n,/70(0.5(n— 1)) a@ VSVnlnv —v+x—nin+n

The likelihood ratio tests for this simultaneous or union-intersection
hypothesis testing generally involve the one-sample mean and variance
hypothesis testing statistics. These partial test statistics, eqs. (7) and (8),
are not independent (when n > 6) with a non-zero correlation coeffi-
cient, in eq. (9). The test statistic A tests the partial null hypothesis that
Hy : it =y and the fact that the sample variance is an unbiased esti-
mator of the population variance, E(S?) = ¢2. Similarly, the test statistic
B tests the partial null hypothesis that Hy : 6> = ¢2. The correlation

coefficient follows directly from the fact that A" = ("’l)friz”“’)z ~ e
0

and E(AB) = (n—1). Test statistic A", relative to A, requires that the

population variance ¢ = 02 is known. While the mean and variance of

statistic B are its degrees of freedom and twice that respectively, the

combination function is the unweighted sum of the probability values, 7,
from these partial hypotheses’ tests, the Fisher, Tippett and Liptak
combination functions are defined in eq. (10), (11) and (12), where m is
the number of partial single restriction dependent tests.

TestI = —2Inm; ~ 1*, om) 10)
i=1

Test I = min(zy, ..., mn) With Fy) =1 - (1 —y)>,0 <y <1 1)

dv (6)

TestIll = » m with F(y) = 0.5y%,0 <y < 1&1-0.5(2 -y)*, 1<y
i=1
<2
12)

Several dependent single restriction hypothesis tests produce higher
family error rate than the predetermined test size, 1 — (1 — )™ > o.
One prominent solution to adjust for this family error rate and reduce it
to the allowed level of significance is the Bonferroni adjusted or cor-
rected techniques. Other combinations of test statistics A and B exits. For
instance, Arnold and Shavelle (1998) and Rao (1973) propose using Test
IV in eq. (13), Test V, and eq. (14). Test V follows directly from Test IV
and the fact that the sample variance is a consistent estimator of the
population variance, that is, the sample variance converges to the
population variance in large enough samples, S?”, 62. Finally, Test VI in
eq. (15) follows from Arnold and Shavelle (1998).

2

)_( _ 2 sZ _ 52
TestIV = n( o) + n( 00) ~ )(zo:.(m> as)

. . . — 2 ] .
mean and variance of statistic A are =1 and % respectively
(Bickel & Doksum, 1977).

n—1)(X - pu,)* d
A= ();(9—2”0) ~Fy1n-1) )(2«_(1) )
(n—1)8%
B= a7 2 s ®
n_sg 198
AB)= — | >
corr(4,B) {nz -3n+ 2} ©)

2 ]
o5 204

X = pp)? Gl )’

Pesarin and Salmaso (2010) show that linear combination strategies
like the Liptak, Fisher, and Tipett combination functions can combine
these two partially dependent test statistics into a single test for
decision-making for or against the null hypothesis. While the Liptak

n

Test V = 5 557 a4

Test Vi—n|in(%) 1S E=m)® | _ s 15)
est =n § +;g 0_% - ~) ,(m) (

Based on egs. (7), (8), (13), and (15), we can test the log approxi-
mation mean condition at its zero limit but cannot test its variance
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condition at the zero limit. Based on the grid search for different com-
bination values of 6y = (s, 67) in section 2.2., these test statistics are
used for inferences under the null of using log difference approximation,
Hy: (u,06%) <6y = (0,0.026%) = {u =0} N {c* < 0.026}, against the
alternative hypothesis of not using the log difference approximation,
Hi : (p,0%) 6 > (0,0.026%) = {u # 0} U {c® > 0.026}. However, it is
important to state that since the conditions for log difference approxi-
mation is that both mean and variance tend to zero. A partial mean test
hypothesized value that tends to zero, in absolute terms, other than the
zero limit itself could be applied. This also applies to a partial hypoth-
esized standard deviation limit value that is around 2.6 %.

Hy : p. = B, = Use log difference approximation
H; : p, # B, = Do not use log difference approximation

7;r - ﬁx
s€2(Br) + s€2(Bx)

An alternative ex-post estimation testing approach is also discussed.
Based on the simulation exercise, the actual returns have consistently
estimated the true causal effect under the causal assumptions. As such,
can be used as a reference for the log return’s causal effect estimation.
Therefore, a difference in estimates test can be done to decide when to
use the log difference approximations, like log return, in a regression
analysis. Under the null hypothesis, the causal estimate of return is
statistically not different from that of the log difference approximation,
log return. Also, under the null, the return and log return estimators are
unbiased and consistent, but the return estimator is efficient. Under the
alternative hypothesis, only the return estimator is unbiased and
consistent. This test is the basic single restriction T — test statistic in eq.

T (16)

~ tn,+nx—2,(l/2

(16) on a regression models’ estimates. B, is the estimate using the re-

turn while 3, is the log difference approximation or log return estimate.
Secondly, this test statistic in eq. (16) also applies to testing the null
hypothesis of using adding one before taking the natural logarithm of a
variable, In(X + 1), against the alternative hypothesis of using a non-
zero large-enough subsample, in a causal effect regression analysis.
Table 2 presents and discusses the rejection rates or type I errors of
the simultaneous mean and variance test statistics. This Type I error, the
probability of rejecting a true null hypothesis, in Table 2 is for a 5 % test
size or significance level. Therefore, the results in Table 2 are expected
to be around 5 %. Return processes from y = 0 and 6? = 0.0262 normal
population are simulated for different sample sizes and the test statistics
I - VI are applied to test the true null hypothesis of using log difference
approximations against the false alternative of not using the log differ-
ence approximations in N = 100, 000 iterations. These type I errors in
Table 2 are not consistently around 5 % but appear to increase in sample
sizes. Consequently, this leads to high test power for the test statistics,
subtracting type II errors from one. This is expected since type I error is
directly related to the power of the test but inversely related to type II
error. Table 2 results confirm that these test statistics are not efficient or
sufficient to determine whether (or not) to use the log difference
approximation at a predetermined test size or significance level. This
creates room for an improved test statistic that can sufficiently test the

Table 2
Tests’ type I error rates
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null hypothesis of using the log difference approximation. However, the
proposed alternative difference-in-estimates test in eq. (16) performed
very well with a type I error of zero for all sample sizes. As such, the
proposed test in eq. (16) is proposed as the benchmark test to test the
null hypothesis of using log difference approximations against its
alternative hypothesis of not using the log difference approximations.

2.4. Empirical data

To empirically illustrate the discussions of this study on log differ-
ence approximations, the daily Bitcoin price and trade volume data,
from 1/7/2019 to 30/6/2020, is collected from the coin market capi-
talization database. This dataset is used to investigate the empirical use
of log difference approximations, log returns, in a regression analysis.
Secondly, to empirically illustrate the causal estimation effects of
In (Xi e+ 1), 2019 firm-level empirical data is sourced from CSMAR for a
sample of A-share listed companies in China.

3. Results and discussions
3.1. Simulation results and discussions

3.1.1. Returns and log differences under homoscedastic errors

In this section, the performance of the log difference approximation
for return, under different scenarios and conditions, is examined using
simulation exercises. Generally, the scenario designs are homoscedas-
ticity, heteroscedasticity, and omitting control variable(s). The condi-
tions are small sample mean and variance, small mean and large
variance, and large mean and variance. Table 3 shows the baseline
simulation results for returns and its log difference approximation under
homoscedastic errors. The simulation condition is that of small mean
and variance. That is, the returns are normally simulated from an equal
population mean and variance of 0.1 % for each of the 100,000
iterations.

Based on Table 3 results, the OLS estimates of the true population
slope coefficient while using the actual return, r; from eq. (1), and the
log difference, x; from eq. (2), are unbiased and consistent. However, the
log difference estimates are less efficient. As such, the estimates from
using the actual returns, r;, are BLUE relative to the use of log difference
approximation, x;. The results in Table 3 confirm that when the neces-
sary and sufficient conditions to approximate assets’ returns with log
difference are met, the slope estimates of a log difference approximation
remain unbiased and consistent but less efficient. Hence, the necessary
condition to approximate returns with log difference is that the sample
mean of the return tends to zero while the sufficient condition is that the
variance of the sample returns also tends to zero. Table 3 confirms these
log difference approximation conditions.

In Table 4, the returns are again generated from a normal distribu-
tion with a 0.1 % population mean but with a relatively larger variance
of 2.3. The simulation results in Table 4 reveal that using the actual
return, r; from eq. (1), produced unbiased, consistent and efficient es-
timates of the true population slope parameter. Conversely, the log
difference estimates give both biased and inconsistent estimates of the
true slope and intercept terms. Therefore, the OLS estimates remain

N =100, 000 iterations

n=>5 n =20 n =30 n =50 n =100 n =500 n = 5000 n = 10000
Test I 0.02176 0.03545 0.03762 0.04238 0.04597 0.05785 0.12996 0.21233
Test II 0.04548 0.04923 0.04911 0.05109 0.05086 0.05775 0.12370 0.20141
Test I1I 0.00407 0.02672 0.03056 0.03625 0.04113 0.05516 0.11214 0.16370
Test IV 0.07053 0.05624 0.05313 0.05339 0.05252 0.05793 0.12289 0.20029
Test V 0.23879 0.11102 0.0914 0.07761 0.06370 0.05777 0.12117 0.1989
Test VI 0.08225 0.05717 0.05435 0.05365 0.05250 0.05725 0.12237 0.20001
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Table 3

re ~norm(u = 6 = 0.001) and var(er;) = o

2
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N = 100,000 iterations

n=>5 n =20 n = 30 n =50 n =100 n = 500 n = 5000 n = 10000
Actual Return (1, from eq. (1))
/70 5.000453 4.998705 5.000279 5.000971 4.999866 5.000093 5.000056 4.999965
se(fjo) 0.898076 0.333491 0.267912 0.204023 0.143103 0.063358 0.020014 0.014115
21 51.34340 50.50396 49.35558 49.82161 50.06522 50.23295 50.18034 50.22028
56(171 ) 705.9825 242.0610 192.3942 146.2836 101.6518 44.86654 14.111215 9.959523
Log Difference (x, from eq. (2))
7}0 5.000445 4.998702 5.000277 5.000970 4.999865 5.000093 5.000056 4.999965
se(ﬁo) 0.898418 0.333516 0.267925 0.204029 0.143105 0.063358 0.020013 0.014115
ﬁl 51.39232 50.55473 49.40492 49.87120 50.11521 50.28315 50.23047 50.27043
se(ﬁl) 706.6922 242.3021 192.5860 146.4300 101.7534 44.91128 14.12533 9.969448
Data Generating Function (DGF) is Y; = 5 + 50.2r; + e; and e; ~ N(O, 12). The OLS averages & bootstrap standard errors are reported.
Table 4
re ~norm(u = 0.001,0 = 2.3) and var(ery) = o
N = 100,000 iterations
n =20 n =30 n =50 n =100 n =500 n = 5000
Actual Return (ry, from eq. (1))
ED 4.999124 4.999763 5.000682 4.999803 5.000119 4.999304
se(ﬁo) 0.243316 0.197516 0.151773 0.107316 0.047801 0.015271
7}1 50.20006 50.19941 50.19988 50.19989 50.20001 50.19946
se(ﬁl) 0.157916 0.124237 0.093237 0.064594 0.028409 0.009184
Log Difference (x, from eq. (2))
/Afo 39.75207 40.26754 40.69823 41.02722 41.30717 41.35817
se(fjo) 8.437654 6.786831 5.224683 3.679969 1.621912 1.621912
ﬁl 62.58866 62.40113 62.08694 61.75775 61.39941 61.32379
se(fjl ) 11.59787 9.948291 8.241095 6.230963 3.030842 0.961507

Data Generating Function (DGF) is Y; = 5 + 50.2r; + e; and e; ~ N(0,1?). The OLS averages & bootstrap standard errors are reported.

BLUE using the actual return, r, from eq. (1) while the log difference
approximation fails even when the mean return is very close (or tends)
to zero, 0.001. This suggests that having the sample average of the actual
returns tending to zero is only a necessary condition and not a sufficient
condition to adequately approximate the actual returns with log dif-
ference, x;, from eq. (2). Both the necessary and sufficient conditions are
illustrated in Table 1. As such, in addition to the sample mean being
close to zero, the variance of the sample return should also be suffi-
ciently close to zero. Based on the last column in Table 4, even with a
large sample size, the log return estimates do not converge to the pop-
ulation parameter. As such, the OLS estimators for log return are

Table 5
P, ~ y%5][0.5 < 7 < 2] and var(e,|r;) = o2

inconsistent.

Given the normally simulated returns with relatively larger variance,
in large sample sizes, the computed asset prices become explosive and
can tend to either zero or infinity. This is the reason larger sample size
results are not reported in Table 4. To work around this issue, the asset
prices are directly simulated from a chi-square distribution with mean
return restriction or condition. That is, for each iteration, the asset prices
are simulated from the chi-square distribution, next, the actual returns
are computed following eq. (1). Then, the sample average of these
returns is checked against the mean return restriction. If this restriction
is satisfied, the OLS estimation is executed, otherwise, another asset

N = 100,000 iterations

n=>5 n =20 n =30 n =50 n =100 n = 500 n = 5000 n = 10000

Actual Return (1, from eq. (1))
Bo 5.001184 4.999541 4.999490 4.999312 4.999784 5.000068 5.000001 5.000022
se(/Aio) 0.504371 0.238711 0.193154 0.149210 0.104847 0.046405 0.0145947 0.010317
B 50.19984 50.20033 50.19996 50.20026 50.19996 50.19988 50.20000 50.20001
se(/A}l ) 0.295004 0.113749 0.090187 0.068317 0.046735 0.019663 0.005454 0.003744

Log Difference (x, from eq. (2))
ﬁo 44.53044 46.19288 45.05813 43.25560 41.15670 38.62279 38.46406 38.47185
se(ﬁo) 22.23387 15.69305 14.27221 12.34472 9.762046 5.214240 1.779176 1.266048
h 81.43259 89.80402 91.39902 92.05184 91.84194 90.48083 90.89022 90.97349
se(B1) 24.08447 27.56551 27.99995 27.47690 25.40035 17.38078 7.236477 5.325233

Data Generating Function (DGF) is Y; = 5 + 50.2r; + e; and e; ~ N(O, 12). The OLS averages & bootstrap standard errors are reported.
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price is simulated. This is solely done to be able to control the sample
mean of the simulated returns. Generally, Table 1 illustrates the scenario
where the sample mean and variance of the returns tend to zero. In
Table 4, the sample mean of the return is maintained to tend to zero but
the variance is increased. In Table 5, the mean and variance of the
sample returns are relatively larger and do not tend to zero. In the
simulated samples, the mean of the returns is restricted to lie between
0.5 and 2, with both limits, while on average, the standard deviations of
the sampled return are 2.133359, 2.429677, 2.483547, 2.509065,
2.525344, 2.567651, 2.748710, and 2.790675 for each of the sample
sizes respectively. In essence, Table 5 illustrates the condition of a
relatively larger sample return mean and variance. As shown in Table 5,
the actual returns results are unbiased and consistent while that of the
log difference is biased and inconsistent even in large samples. Based on
the last column in Table 5, even with a large sample size, the log return
estimates do not converge to the population parameter. As such, the OLS
estimators for log return are inconsistent.

3.1.2. Returns and log differences under heteroscedastic errors

Under this second scenario, all the conditions simulated in Tables 1
to 3, are repeated but with heteroscedastic errors. A simple hetero-
scedastic nature of the error term is applied. First, the simulated returns
are grouped by quantiles (0 %, 25 %, 50 %, 75 %, and 100 %). Then, the
error is simulated with zero mean and a variance that increases in the
quantiles. Specifically, if the return is between the 0 % to 25 % quantile,
the variance of the simulated error is 1, if the return is between the 25 %
to 50 % quantile, the variance of the simulated error is 5, if the return is
between the 50 % to 75 % quantile, the variance of the simulated error is
10, and if the return is between the 75 % to 100 % quantile, the variance
of the simulated error is 18. The results in Table 6 are the hetero-
scedasticity version of the homoscedasticity results in Table 1. As ex-
pected, the OLS estimates remain unbiased and consistent in the
presence of heteroscedasticity. That is, the actual return estimates and
that of the log difference are both unbiased and consistent in large
samples. This is due to the fact the necessary and sufficient conditions
for log difference approximation of return are satisfied. However, rela-
tive to the log difference approximation results, the actual return esti-
mates of the slope are more precise and more accurate with more
efficiency.

The results in Table 7 are the heteroscedasticity version of the ho-
moscedasticity results in Table 4. From the results in Table 7, the esti-
mates with the actual returns are unbiased and consistent given
heteroscedastic errors while that of the log difference are biased and
inconsistent. That is, even when only the necessary conditions for
approximating returns with log difference are met, yet, log difference
approximation produces biased and inconsistent results thus, leading to
invalid inference, misleading conclusions, recommendations and policy
implications. Based on the last column in Table 7, even with a large

Table 6
r ~norm(u = ¢ = 0.001) and var(e,|r,) = o;?

International Review of Financial Analysis 97 (2025) 103864

sample size, the log return estimates do not converge to the population
parameter. As such, the OLS estimators for log return are inconsistent.
Again, this reinforces that whether there is homoscedasticity or heter-
oscedasticity in the model, as long as the necessary conditions and suf-
ficient conditions of log difference approximation are met, the log
difference estimates remain unbiased and consistent (Table 1 and
Table 6). However, when the sufficient condition is not satisfied, the log
difference approximation results are biased and inconsistent (s 2 and 5),
whether or not the error is homoscedastic.

Similarly, Table 8 results are the heteroscedasticity version of the
homoscedasticity results in Table 5. In the samples, the mean of the
returns lies between 0.5 and 2, with both limits included, while the
sample returns standard deviations, on average, are 2.133359,
2.429677, 2.483547, 2.509065, 2.525344, 2.567651, 2.748710, and
2.790675 respectively for each of the simulated sample sizes. The results
in Table 8 confirm, yet again, that the log difference estimates are biased
and inconsistent, even in large samples, when the necessary and sulffi-
cient conditions of approximating returns with log difference are not
met, given heteroscedasticity or homoscedasticity. Based on the last
column in Table 8, even with a large sample size, the log return esti-
mates do not converge to the population parameter. As such, the OLS
estimators for log return are inconsistent.

3.1.3. Log difference approximations, control variables and In(X;/ + 1)

While omitting some control variables from a regression model can
bias the causal effect estimation of the interest regressor or independent
variable, omitting other control variables does not bias the causal effect
estimation of the interest regressor. If a control variable correlates with
the main interest regressor and explains the dependent variable, in part,
omitting such a control variable in the regression model can bias the
causal effect estimation of the interest regressor. This is called the
Omitted Variable Bias (OVB) which leads to endogeneity problems in
the regression model. Thereby, biasing the OLS estimation of the true
causal effect of the interest regressor in a regression model. On the
contrary, if a control variable either correlates with the main interest
regressor or explains the dependent variable, in part, omitting such a
control variable in the regression model does not bias the causal effect
estimation of the interest regressor. Thus, the true unbiased and
consistent causal effect can still be estimated using OLS and under the
causal assumptions. The first part of this third scenario design is
developed to investigate the performance of log difference given these
two possible omitted variables in a regression model. The second part
answers the question of whether it matters to use the log difference
approximation for a control variable. While the last part illustrates the
dangers of In(X;/, + 1) and offered a robust solution.

When W,, [W;:p, # 0and cov(r, W;) # 0], is omitted from the
regression model, the OLS estimator for both the actual returns and log

N = 100,000 iterations

n=>5 n =20 n =30 n =50 n =100 n =500 n = 5000 n = 10000

Actual Return (1, from eq. (1))
7}0 5.023936 4.998142 4.998252 4.997849 4.998206 5.000470 5.000305 4.999794
se(ﬁo) 6.846201 1.876920 1.456227 1.068415 0.735633 0.320239 0.100862 0.071052
B 43.43653 44.82772 40.80869 54.51218 48.60060 51.03428 50.00387 50.29240
se(ﬁl) 8364.014 2996.166 2405.580 1818.003 1260.744 559.1872 175.7574 124.5387

Log Difference (x, from eq. (2))
Bo 5.023944 4.998130 4.998245 4.997848 4.998206 5.000470 5.000305 4.999794
se(Bo) 6.850775 1.876267 1.455442 1.067650 0.735007 0.319924 0.100761 0.070981
B 43.46754 44.87742 40.85409 54.56581 48.64880 51.08545 50.05417 50.34241
se(B1) 8371.696 2998.181 2407.121 1819.095 1261.457 559.4873 175.8513 124.6050

Data Generating Function (DGF) is Y; = 5 + 50.2r; + e; and e; ~ N(O, 612), The OLS averages & bootstrap standard errors are reported.
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Table 7
re ~ norm(u = 0.001, 6 = 2.3) and var(e,|r;) = o;?

N = 100,000 iterations

n =20 n =30 n =50 n =100 n = 500 n = 5000
Actual Return (1, from eq. (1))
ﬁo 4.996886 4.994354 5.001707 4.995691 5.001042 4.988565
se(ﬁo) 1.667356 1.366501 1.032978 0.717815 0.317345 0.099705
ﬁl 50.19579 50.19209 50.20253 50.19984 50.20044 50.19035
se(ﬁl) 2.298701 1.824227 1.373061 0.950353 0.420960 0.135216
Log Difference (x;, from eq. (2))
[70 39.74612 40.25663 40.70065 41.02289 41.30848 41.34070
53(20) 8.837060 7.117623 5.476249 3.851575 1.698864 0.555889
[;1 62.58124 62.39144 62.08946 61.75602 61.40023 61.31032
se(ﬁl) 11.84360 10.14540 8.376539 6.311155 3.064428 0.969547
Data Generating Function (DGF) is Y, = 5 + 50.2r; + e; and e; ~ N(O, ciz). The OLS averages & bootstrap standard errors are reported.
Table 8
P; ~ x%5|[0.5 < F; < 2] and var(e;|r;) = oi?
N = 100,000 iterations
n=>5 n =20 n =30 n =50 n =100 n =500 n = 5000 n = 10000
Actual Return (1, from eq. (1))
ﬁo 5.010682 4.999215 4.996834 4.993466 4.998089 5.000201 4.999979 5.000202
se(ﬁo) 2.275419 1.905542 1.624339 1.279679 0.917854 0.420502 0.136630 0.097356
ﬁl 50.19430 50.20475 50.19740 50.20343 50.19884 50.19820 50.19995 50.20014
se(ﬁl ) 3.987202 1.783827 1.442266 1.103901 0.767636 0.328276 0.092800 0.063939
Log Difference (x;, from eq. (2))
[70 44.53494 46.19534 45.05364 43.25109 41.15471 38.62181 38.46401 38.47212
Se(l?o) 22.56433 15.86815 14.39862 12.42838 9.823160 5.239167 1.785523 1.270212
[;1 81.42533 89.80783 91.39343 92.05231 91.83958 90.47835 90.89025 90.97367
36(751) 24.70016 27.69189 28.08448 27.52214 25.43510 17.39403 7.238879 5.326243
Data Generating Function (DGF) is Y; = 5 + 50.2r; + e; and e; ~ N(0,0;?). The OLS averages & bootstrap standard errors are reported.
Table 9
re ~ norm(u = ¢ = 0.001), var(e,|r;) = 02, and controls
N = 100,000 iterations
n=>5 n =20 n =30 n =50 n =100 n =500 n = 5000 n = 10000
Actual Return (1, from eq. (1))
ﬁo 3.819122 3.821517 3.821660 3.820868 3.821430 3.820866 3.820977 3.820937
se(ﬁo) 1.144578 0.423638 0.340861 0.259879 0.181317 0.080477 0.025524 0.017983
ﬁl 50.57962 50.05730 49.55907 50.14266 50.09642 50.04591 50.31307 50.23437
se(ﬁl) 896.9574 307.3151 245.2884 186.1672 128.8637 56.94253 18.03241 12.72858
Log Difference (x;, from eq. (2))
[A;O 3.819112 3.821516 3.821659 3.820867 3.821430 3.820866 3.820977 3.820937
se(/Aio) 1.145022 0.423670 0.340877 0.259887 0.181320 0.080477 0.025524 0.017983
[;1 50.63068 50.10650 49.60877 50.19273 50.14623 50.09608 50.36330 50.28456
se(/Ail) 897.8652 307.6206 245.5337 186.3530 128.9926 56.99942 18.05048 12.74133

Data Generating Function (DGF) is Y; = 5+ 50.2r; — 0.5W, + e, cov(r;, W) = 0, and e, ~ N(O‘ 12). The OLS averages & bootstrap standard errors are reported.

return are biased and inconsistent. As such, whether the actual returns
or the log difference approximation is used, the OLS estimators remain
biased, even in large samples, in the presence of OVB. This is as expected
since OVB leads to an endogeneity problem in the regression model.
Thus, the simulation results are not presented. Conversely, omitting W,
[W; : By # 0 and cov(ry, W;) = 0] and [W,: S, = 0and cov(r:, W;) # 0]
from the regression model reveals that the log difference approximation
gives an unbiased, consistent, and inefficient OLS estimator when the
necessary and sufficient conditions for the log difference approximation
of returns are met (see Table 9). On the other hand, the log difference

10

approximation produces biased estimates when the necessary and suf-
ficient conditions of approximating returns with log differences are not
met (see Tables 8 and 9).

From Table 9 and as expected, since the control variable, W;, has no
relationship with the interest regressor, r;, omitting the covariate, W, in
the sample regression model will not bias the slope estimate, but the
intercept term. The simulation results in Table 9 reveal that this is true
for both the actual return and the log difference approximation due to
the fact the necessary and sufficient conditions for the log difference
approximations are met. However, the log difference estimates remain
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Table 10

re ~norm(u = 0.001, 6 = 2.3), var(e;|r;) = ¢, and controls

N = 100,000 iterations

n =20 n =30 n =50 n =100 n = 500
Actual Return (ry, from eq. (1))
Bo 3.821238 3.821133 3.820899 3.821385 3.820794
se([%) 0.309367 0.251063 0.193284 0.136247 0.060799
B 50.20005 50.19962 50.19987 50.19998 50.19984
se(/A}l ) 0.201036 0.157897 0.118974 0.081789 0.036009
Log Difference (x, from eq. (2))
7}0 38.53796 39.13200 39.54394 39.87877 40.12964
se(ﬁo) 8.423840 6.831013 5.236542 3.672762 1.62646
B 62.52280 62.39477 62.06056 61.70622 61.39991
se(B1) 11.59268 9.980341 8.221649 6.265124 3.027167

Data Generating Function (DGF) is Y; =5+ 50.2r; — 0.5W; + e, cov(r;, W) =0,
and e, ~ N(0,12). The OLS averages & bootstrap standard errors are reported.

less accurate, less precise, and inefficient, even in large samples, relative
to the return estimates although both are unbiased and consistent.

Again, the results in Table 10 show that the log difference approxi-
mation of return produces a biased and inconsistent estimate of the true
slope estimate when the control variable, W;, which has no relationship
with the interest variable, is omitted. However, this is largely due to the
fact the necessary and sufficient conditions for using the log difference
approximation of return are not jointly satisfied.

In the same light, with relatively larger sample return mean and
variance, Table 11 results confirm that the return slope estimates remain
unbiased and consistent while that of the log difference is biased and
inconsistent even in large samples. The simulated return restriction is
that the sample average lies between 0.5 and 2, with both limits
included while on average, the standard deviations for each sample size
are 2.132211, 2.428752, 2.478786, 2.509340, 2.528713, 2.572744,
2.755755, and 2.790350 respectively. Based on the last column in
Table 11, even with a large sample size, the log return estimates do not
converge to the population parameter. As such, the OLS estimators for
log return are inconsistent.

The use of log difference approximations (like the log return) as a
regressor is still problematic, whether (or not) it is the main interest
regressor. When the log difference approximation conditions are not
met, the use of the log difference approximation to compute the main
interest regressor(s) leads to a biased and inconsistent causal OLS esti-
mator. Also, when the log difference approximation conditions are (not)
met, the use of log difference approximation to compute other cova-
riates, control variables, in the regression model can lead to biased and
inconsistent causal OLS estimator of the interest regressor(s) if this log
differenced control variable correlates with the interest regressor and

Table 11
P, ~ y%5][0.5 < F; < 2], var(e,|r;) = ¢, and controls
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(significantly) explains the dependent variable, in part. This is the OVB
that leads to an endogeneity problem in the regression model. However,
if this log-differenced covariate is a control variable that either corre-
lates with the interest regressor or (significantly) explains the dependent
variable, in part, the OLS causal estimation of the interest variable re-
mains unbiased and consistent, under the causal assumptions, when the
log difference approximation conditions are unmet.

Therefore, it’s important to use the right log difference approxima-
tion (i.e., meeting the conditions) for control variables, especially when
the log differenced control variable correlates with the interest regressor
(s) and explains the dependent variable, in part. In a nutshell, if a co-
variate in a regression model correlates with the main interest regressor
(s) and (significantly) affects or explains the dependent variable, then, it
can affect the coefficient of the interest regressor when omitted in the
regression model. Therefore, to estimate the true causal effect of the
interest regressor, we must include this covariate in the regression
model. If we must include this covariate in the regression model, then,
it’s important the variable is calculated or measured or approximated
correctly. Hence, the log differenced covariate needs to be correct,
especially, when it correlates with the interest regressor and (signifi-
cantly) explains the dependent variable, in part. This is because it must
be included in the model to correctly estimate the true causal effect of
the interest regressor. In fact, the results in Table 12 show that when the
log approximation conditions are unmet, the use of log difference
approximation as a control variable can, indeed, bias the OLS causal
effect estimation of the main interest regressor when they are (signifi-
cantly) correlated, and the log differenced control (significantly) ex-
plains the dependent variable. This is the case where the log differenced
control variable, r;, [r¢ : fy # 0 and cov(r,Z;) # 0], is included in the
regression model. When the actual return, r,, is used, the true causal
effect of X; is correctly estimated. But when the log returns, x;, is used
(and does not meet the log approximation conditions), the OLS estimator
of the true causal effect of X, is incorrectly estimated. In conclusion, a
log-differenced control variable, W;, can bias the causal effect estimate
of an interest regressor. Secondly, the causal effects of both the actual
returns and log returns are biased and inconsistent in the presence of
OVB. Finally, omitting a control variable that either explains the
dependent variable, in part, or correlates with the main interest re-
gressor does not bias the causal effect of the actual returns but biases
that of the log return when the log difference approximations are unmet.

Data Generating Function (DGF) is Y; =2+ 3In(X;) +e and
e; ~ N(0,1%). The OLS averages & bootstrap standard errors are re-
ported.

At this point, the dangers of using In(X; + 1) in regression analysis
are illustrated. In this simulation and for all sample sizes, X; ~ y?, and
rounded to the nearest whole numbers to have a count or integer data.
Next, if any data points in X; is zero, the random sample, X;, is drawn

N = 100,000 iterations

n=>5 n =20 n =30 n =50 n =100 n = 500 n = 5000 n = 10000

Actual Return (1, from eq. (1))
Bo 3.822755 3.821860 3.820770 3.820487 3.821355 3.821436 3.820975 3.820981
se(/Aio) 0.640875 0.303620 0.245945 0.189120 0.132799 0.058830 0.018585 0.013112
B 50.19783 50.19976 50.20048 50.20000 50.19996 50.19999 50.20003 50.19999
se(/A}l ) 0.376853 0.144922 0.114919 0.087556 0.059818 0.024950 0.006937 0.004767

Log Difference (x, from eq. (2))
ﬁo 43.32305 44.98827 43.80607 42.08127 39.94933 37.45529 37.29433 37.28683
se(ﬁo) 22.25274 15.63188 14.14862 12.28007 9.773476 5.234795 1.799035 1.274851
h 81.37366 89.80789 91.36153 92.02502 91.96111 90.55170 90.94052 90.95876
se(B1) 24.14736 27.59034 27.95930 27.44602 25.77400 17.60233 7.495667 5.419247

Data Generating Function (DGF) is Y¢ = 5+ 50.2r — 0.5W; + ey, cov(r;, W;) = 0, and e; ~ N(O7 12). The OLS averages & bootstrap standard errors are reported.
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Table 12

Using log difference approximation for control variables

International Review of Financial Analysis 97 (2025) 103864

N = 100,000 iterations

n=>5 n=20 n =30 n =50 n =100 n = 500 n = 5000 n = 10000
Actual Return (1, from eq. (1))
Bo 9.989976 10.00262 9.99809 10.00106 9.998932 9.999751 9.999944 10.00004
se(Bo) 0.768084 0.244361 0.196144 0.149726 0.104526 0.046571 0.014659 0.010304
Bz 4.986003 5.002199 4.998133 4.996505 5.000601 5.000099 5.000095 5.000277
se(Bz) 2.21071 0.507734 0.392075 0.295449 0.204727 0.09021 0.028162 0.02018
Br 2.016686 1.995824 2.001982 2.002657 2.00006 1.999944 1.999969 1.999724
se(Br) 1.949114 0.44796 0.346535 0.259614 0.180332 0.079441 0.024539 0.017629
Log Difference (x, from eq. (2))
7}0 10.33415 10.29849 10.27203 10.2436 10.21482 10.16863 10.11939 10.11078
se(ﬁo) 1.117538 0.389363 0.318987 0.249055 0.185798 0.101624 0.046691 0.038509
ﬁz 6.592617 6.835137 6.873831 6.912636 6.95171 7.037271 7.138965 7.155154
se(ﬁz) 1.514168 0.452727 0.381766 0.31869 0.260467 0.17049 0.080964 0.067066
ﬁx 0.954999 0.675305 0.635234 0.59494 0.549162 0.449282 0.322146 0.299647
se(ﬁx) 2.152352 0.620181 0.520415 0.422332 0.335222 0.215757 0.111163 0.094058

Py ~ x%51[0.5 < T < 2], var(e(|r;) = o>. Data Generating Function (DGF) is Y, = 10+ 5Z + 21 + e, cov(r;, Z) # 0, and e, ~ N(0,12). The OLS averages & bootstrap

standard errors are reported.

Table 13

The use of In(X;/, + 1) under homoscedasticity, var(e|r;) = ¢

2

N = 100,000 iterations

n =10 n =20 n =30 n =50 n =100 n = 500 n = 5000 n = 10000

Using In(x;) on non-zero subsamples

ﬁo 2.014027 2.005336 1.985509 2.004388 2.001321 1.999733 1.999573 1.999791
se(fjo) 1.381141 0.863783 0.670689 0.509023 0.352665 0.155488 0.048955 0.034524

/Ajl 2.990841 2.997951 3.007542 2.996925 3.000384 3.000276 3.000234 3.00009
se(/A}l ) 0.727945 0.455604 0.355857 0.26938 0.186903 0.082509 0.025918 0.018351
Using In(x; + 1) on the full sample

7}0 5.313541 5.152779 5.092592 5.072529 5.048355 5.02425 5.0225 5.021811
se(ﬁo) 1.710399 1.1896 0.96674 0.74952 0.528294 0.23718 0.073545 0.05215

ﬁl 1.171221 1.263332 1.293489 1.304573 1.319841 1.331805 1.333019 1.333431
Se(ﬁl ) 0.84485 0.580431 0.47069 0.364772 0.25702 0.115489 0.035723 0.025409

Table 14
The use of In(X;;; + 1) under heteroscedasticity, var(e;|r;) = 6%
N = 100,000 iterations
n =10 n =20 n =30 n =50 n =100 n =500 n = 5000 n = 10000

Using In(x;) on non-zero subsamples

7}0 2.227563 1.955088 2.047043 2.013607 1.995693 2.008219 2.003623 1.996921
se(ﬁo) 12.89686 7.590617 5.739388 4.19596 2.907235 1.244974 0.395687 0.281454

ﬁl 2.88071 3.020849 2.959815 2.991643 3.006319 2.993915 2.997399 3.002468
Se(ﬁl) 8.467413 5.187395 4.023002 3.000865 2.096051 0.908924 0.289462 0.206641
Using In(x; + 1) on the full sample

/Ajo 5.257782 5.083262 5.167984 5.0718 5.041273 5.040372 5.025923 5.015942
se(fjo) 8.634432 5.828199 4.871704 3.694501 2.598436 1.153893 0.36805 0.26003

El 1.206326 1.294149 1.244652 1.304579 1.326167 1.322169 1.330683 1.33709
56(171 ) 5.48393 3.673091 3.055456 2.325828 1.639428 0.727015 0.232346 0.16467

Data Generating Function (DGF) is Y; = 2 + 3In(X;) + e; and e; ~ N(07 czi). The OLS averages & bootstrap standard errors are reported.

again until all values of X; are strictly positive integers. Next, the DGF
Y; =2+ 3In(X;) + e, & ~ N(0, 1), is used to generate Y; samples. Next,
10 % of the data points in X; are replaced with zeros. Then, run two
different regressions, firstly, using only the 90 % non-zero samples (i.e.,
subsample) and secondly, using the full sample with In(X; + 1) to avoid
taking the log of zeros. These are done under homoscedasticity and
heteroscedasticity conditions. The simulation results are presented in
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Table 13 and Table 14. Both under homoscedasticity conditions
(Table 13) and heteroscedasticity conditions (Table 14), the OLS esti-
mators of the subsamples are unbiased and consistent for the intercept
term and slope. Conversely, the OLS estimators are not only biased for
the slope coefficient but also biased for the intercept term. Therefore,
these results confirm that the common practice of using In(X;, + 1) to
avoid a log of zero biases the OLS estimates of the true causal effect, even
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Table 15
Empirical Application: Log Difference Approximation, log return.
Br Bx 1B — Bl Br B 1B: — Bl Br B 1B: — Bl
Panel A 4.843%** 5.535%** 0.691 4.851%** 5.547%** 0.695 5.078*** 5.147%** 0.069
(0.823) (0.836) (1.173) (0.825) (0.838) (1.176) (1.359) (1.331) (1.902)
T 0.001 0.001 0.001
2 0.001 0.001 0.001
Panel B 1.124%** 1.909%*** 0.785%* 1.124%** 1.913%** 0.788** 1.680%*** 1.775%** 0.094
(0.262) (0.288) (0.390) (0.263) (0.289) (0.391) (0.481) (0.459) (0.665)
T 0.001 0.001 0.001
o, 0.013 0.013 0.013
Controls NO NO YES YES YES YES
N 367 367 367 367 367 367
F-Statistic 43.853%*** 34.652%** 21.908%*** 17.301%** 14.621%** 11.518%**
Adj. R? 0.107 0.087 0.107 0.087 0.108 0.087

Note: *p < 0.1; **p < 0.05; ***p < 0.01.

in large samples. A robust solution to avoid taking the log of zeros is to
remove the units, entities, or individuals with zero values from the
dataset and use the subsample for estimation. This is because; if the
sample is (as if) random, causal effect estimations are guaranteed under
the causal effect assumptions. It is important to also mention that the use
of In(X;; + 1) when X;,—oco0 might not be problematic since In(X;/) —
ln(Xl-/t + 1)—>0.

3.2. Practical empirical applications

In this section, empirical data analyses are presented for both log
difference approximation and In(X + 1) estimations. In addition, the ex-
post estimation difference-in-estimates test is performed to show the
differences between these common practices and the robust approaches.
Table 15 shows the use of log return as a log difference approximation
for return under two different situations. In panel A, the effects of using
return, /Ai,, and log return, ﬁx, are presented and their estimates are very
close without any significant differences in the estimates, |B, — fy|.
Guaranteeing that the estimated effects of return are statistically not
different from those of log return. This is the outcome when the sample
average and variance of returns tend to zero. Particularly, the sample
average and variance of the sampled return of Bitcoin are 0.001 and
0.013 respectively. Thus, the results in panel A of Table 15 confirm that
when the sample mean and variance of return both tend to zero, the
estimated causal effects of returns are not different from that of log re-
turn. As such, the log difference approximation of log return can be used
in return’s stead to correctly estimate the true causal effects of return.

The estimated model s AVy = po+pii+ /)’jcontrolsjt + e
where i ¢ [r;, X;] and controls € [covid19,i x covid19]. In panel B, the Bit-
coin price is transformed using Price; = Price,>® solely to increase the
variance of the return while leaving the mean unchanged to investigate
the differences in estimate between the log return approximation and
the actual return.

In panel B, one of these conditions for log difference approximation

Table 16
Empirical Application: The In(X + 1) practice.

fails. That is, while the mean of Bitcoin’s return tends to zero, the
variance does not. The sample return mean remains 0.001 but the
variance is 0.013. Thus, while the mean condition is satisfied, the
variance condition is not. The empirical results in panel B confirm that
under this situation, the return estimates are statistically different from
those of log return. From the simulation analysis so far, it follows that
under this scenario, the return estimators are often unbiased and
consistent while that of log return is biased, even in large samples.

Similarly, Table 16 shows the estimates from In(Patent + 1), sub-
sample In(Patent), and subsample Patent. Against using In(Patent + 1)
and avoid taking the log of zero, the robust

The estimated model is ESG; = f, + fii + pjcontrolsj: + e

wherei ¢ [Patent[, InPatent,, In(Patent + 1)t]. The two differences in es-
timate test columns are Q = /A}p — /A}h,(pﬂ) ’ and R = ‘ﬁlnp - ?;ln(erl) .

Approach of taking a none zero subsample for In(Patent) and Patent
show that empirically, these estimates are statistically different. Based
on the simulation analysis, the subsample robust approach for In(Patent)
(and Patent) produces unbiased and consistent results while that of In
(Patent + 1) yields biased results. This is also confirmed by the models’
coefficient of determinations which are higher for the robust approaches
relative to those of the discussed common practices.

4. Conclusion and recommendations

This article implores researchers to revisit the use of log differencing
as an approximation for asset returns, growth rate, and percentage
changes for both the interest regressor(s) and control variables. Firstly,
log differenced price is never equal to asset returns but can be a good
approximation of returns when the returns are sufficiently close to zero
i.e., the mean and variance of the returns are very close to zero. Only
when these conditions are met will the log difference approximations
produce unbiased and consistent causal estimates. However, the log
difference estimates are less efficient, less precise, and less accurate. On
the other hand, when these conditions are not met, the log difference

Dependent Variable: ESG

.//3\13 ﬁln(p) ﬁln(p +1) Q R ﬁp ﬁln(p) ﬁln(p +1) Q R
Estimate 0.241 %% 2.983%** 1.800%** 1.559%** 1.183%** 0.237%** 2.368%** 1.706%** 1.469%** 0.662
(0.018) (0.348) (0.245) (0.246) (0.426) (0.020) (0.421) (0.290) (0.291) (0.511)
Controls No No No Yes Yes Yes
N 795 795 2932 565 565 1932
R? 0.187 0.085 0.018 0.240 0.102 0.028
Adjusted R? 0.186 0.084 0.018 0.231 0.091 0.024
RSE 10.052 10.669 10.229 9.944 10.810 10.246
F Statistic 182.962%*** 73.416%** 53.965%** 25.138%** 9.026%** 7.861%**

Note: *p < 0.1; **p < 0.05; ***p < 0.01.
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approximations produce biased and inconsistent results which leads to
misinformation, invalid inference, incorrect recommendations and
policies. Similarly, adding one before taking the natural log of a vari-
able, to avoid taking the natural log of zeros, also produces biased and
inconsistent causal estimates. Rather, a robust solution is to use a large
enough subsample which correctly estimates the true causal effects
under the causal effect assumptions. This study also establishes the
benchmark test statistic for both deciding whether (or not) to use the log
difference approximation and for adding one to a variable before taking
its natural logarithm in a causal regression analysis. However, this
benchmark test is an ex-post estimation approach that requires two
different estimation results. It will be interesting to develop a robust and
sufficient ex-ante estimation test statistic, like Tests I — VI, that suffi-
ciently decides the choice of using log difference approximation at a
given significance level.

Generally, logarithmic transformations are handy in empirical data
analysis. It could be to make a variable stationary, reduce the variance of
a variable, reduce the differences in the magnitude of a variable’s data,
etc. A key question remains, why do I want to make a variable stationary
by log transformation instead of differencing?, why do I want to reduce
the differences in the magnitude of a variable?, why do I want to add one
to a variable and take a log?, etc. Sometimes, these actions can bias the
estimation of the true causal effect, even when the log-transformed
variable is a control variable. For example and assuming a variable,
patent; adding 1 before taking the log of the patent does not only lie that
a firm without patent, X = 0, now has a patent,X" = 0+ 1, or that the
log of the patent for a firm without a patent remains 0, In(X" =0+ 1) =
X = 0 but the log of patents for a firm with 2 patents is now approxi-
mately 1 patent, (X" =2+ 1) =1.097 < X = 2, but also biases causal
effect estimation. This log-transformed patent has altered the informa-
tion in the original patent data, In(x + 1) — In(x) varies and In(x + 1) —
In(x)—0 if X—o0. A robust solution is to use a large enough subsample,
removing all the firms without patents from the sample, for the esti-
mation. Still, the subsample estimates the true causal effect. So, if we
understand how the logarithmic transformation alters the information in
the data, it becomes easy to decide whether to do it. If the alteration is
even or uniform, then, a lesser chance of biasing the causal effect esti-
mates relative to uneven alterations. Of course, In(x + 1) = In(x) as
X—o00. So, this action has little or no (uneven or unequal) alteration
effect on causal estimation when X is large.

The goal is to elicit information from the data and not to alter the
information and then elicit the altered information. To the extent the
logarithm transformations alter the original variable in a non-uniform
manner, it’s easier to suspect that the transformation is likely to alter
the estimation of the true causal effect. Secondly, if we take the natural
logarithm of a variable to reduce the differences between the magnitude
of the data points in the variable, we need to remember that while the
original magnitude differences vary, the log-transformed magnitude
differences remain constant, i.e., xs —x; =aandw X X3 —® X X] = ® X
abutlnx; —Inx; =In(w x x2) — In(w x x1) = p. The variability in data is
exactly the information we require in data analysis. We want to un-
derstand the patterns of these variabilities or variances and their causes.
If we restrict these variabilities by our actions, then we have most likely
altered the true state of the information embedded in the datasets. A
robust solution is to use a subsample, removing outliers with large dif-
ferences with other data points. The idea of random sampling is that the
data is (as if) random and large enough. The idea does not include that a
particular data point, firm or individual must be in the sample. Thus,
different random samples can consistently produce very similar causal
estimates.

Lastly, using logarithmic transformations to make a variable statio-
narity might be trivial. This is mainly because both stationary and non-
stationary variables are capable of estimating the true causal effects, i.e.,
the right values of the coefficients. However, non-stationary time series
commit more type-I errors relative to stationary time series. This is the
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idea behind using differenced-stationary series to test for unit-root or
stationarity as seen in tests like the Dickey-Fuller (DF) test, Augmented
Dickey-Fuller (ADF) test, etc. This is because statistical inferences based
on a non-stationary series are invalid since their standard errors are
biased. Alternatively, the standard errors from a stationary series are
unbiased and can make valid inferences under the causal assumptions
and parameter distributions. If we realize that we need stationary time
series to make valid statistical inferences, why take the log trans-
formation shortcut instead of directly differencing the series and losing
one observation? After all, when a time series is differenced, only one
observation is lost, which is very trivial if the sample size is large
enough. Therefore, only when we answer these questions will the choice
be clear.

In conclusion, this study is a gentle reminder and a call for scholars to
re-evaluate common practices. Questions that need to be answered
before taking these actions might include, not limited to, why do I want
to do this?, what effect does this have on the variable?, what effect does
it have on estimating the true causal effect?, are there other robust al-
ternatives to achieving the same goal or objective?, etc. These can serve
as a roadmap towards correct, valid, powerful, reliable, and influential
results that are used for policy formation and implementation.
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